Затрудняюсь после болезни решить пример. докажите ,что при любом натуральном n значение выражения. 1)17(n) -1 кратно 16 2)23( 2 n+1)+1 кратно 24 3)13 (2n+1)+1 кратно 14 в скобках степень числа указана.
1) 17ⁿ - 1 = (17 - 1)(17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) = 16( 17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1). Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1). Т.к. один из множителей делится на 14, то и все выражение делится на 14.
Для этого надо построить графики функций, из которых состоит система, в одной системе координат, точки пересечения этих графиков будут решениями системы. 1) график - прямая линия, для построения нужны 2 точки. x=0; y=6,5; (0;6,5) y=0; x=2,6 (2,6;0) строим график(см. вложение, красным цветом) 2) график - прямая линия, для построения нужны 2 точки. x=0; y=-3; (0;-3) y=0; x=1,5; (1,5;0) строим график(см. вложение,синим цветом) как видно из графика, прямые пересекаются в одной точке => данная система имеет только одно решение
Для этого надо построить графики функций, из которых состоит система, в одной системе координат, точки пересечения этих графиков будут решениями системы. 1) график - прямая линия, для построения нужны 2 точки. x=0; y=6,5; (0;6,5) y=0; x=2,6 (2,6;0) строим график(см. вложение, красным цветом) 2) график - прямая линия, для построения нужны 2 точки. x=0; y=-3; (0;-3) y=0; x=1,5; (1,5;0) строим график(см. вложение,синим цветом) как видно из графика, прямые пересекаются в одной точке => данная система имеет только одно решение
Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1).
Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1).
Т.к. один из множителей делится на 14, то и все выражение делится на 14.