6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение:
ответ:Для того, чтобы найти при каком значении переменной x равны значения выражений (5x - 1)(2 - x) и (x - 3)(2 - 5x) составим и решим следующее уравнение.
(5x - 1)(2 - x) = (x - 3)(2 - 5x);
10x - 5x2 - 2 + x = 2x - 5x2 - 6 + 15x;
Перенесем в разные части уравнения слагаемые с переменными и без. При переносе слагаемых из одной части уравнения в другую меняем знаки слагаемых на противоположные.
-5x2 + 5x2 + 10x + x - 2x - 15x = -6 + 2;
x(10 + 1 - 2 - 15) = -4;
-6x = -4;
x = -4 : (-6);
x = 2/3.
ответ: x = 2/3
Подобное решение.
Объяснение:
(3х^3+3)-(7х^2+7х)=0
3 (х^3+1)-7х (х+1)=0
3 (х+1)(х^2-х+1)-7х (х+1)=0
(х+1)(3 (х^2-х+1)-7х)=0
(х+1)(3х^2-3х+3-7х)=0
(х+1)(3х^2-10х+3)=0
а)х+1=0
х1= -1
б)3х^2-10х+3=0
D=b^2-4ac
D=100-4×3×3=100-36=64
x2=(10+8)/6=18/6=3
x3=(10-8)/6=2/6=1/3
ответ : х1=1;х2=3;х3=1/3