(4+b)^3=(4+b)(4^2+4b+b^2)=64+16b+4b^2+16b+4b^2+b^3=64+32b+8b^2
ответ:Прежде чем найдем значение данного выражения при заданном значении переменной х, у выражение, то есть раскроем скобки. Следовательно получим:
x(x + 4) - (x - 3)(x - 5) = х * х + х * 4 - (х * х - 5 * х - 3 * х - 3 * (-5)) = х^2 - 4 * х - (х ^2 - 5 * х - 3 * х + 15) = х^2 - 4 * х - (х ^2 - 8 * х + 15) = х^2 - 4 * х - х ^2 + 8 * х - 15 = х^2 - х ^2 - 4 * х + 8 * х - 15 = 0 - 4 * х + 8 * х - 15 = 4 * х - 15.
Если х = 1/6, то значение выражения 4 * х - 15 = 4 * 1/3 - 15 = 4/3 - 15 = 4/3 - 14 3/3 = 4/3 - 13 6/3 = -13 2/3.
Объяснение:
по формуле куба суммы
(4+b)^3=4^3+3*4^2*b+3*4*b^2+b^3=64+48b+12b^2+b^3
^ - означает степень (в степени)
4^2=4*4=16
4^3=4*4*4=64