М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lolko2
lolko2
09.01.2023 06:46 •  Алгебра

1)вычислите ㏒81 13*㏒13 27 2)найдите значение выражения 5^㏒5√5 27

👇
Ответ:
Kot2343
Kot2343
09.01.2023
ответ ответ ответ ответ ответ
1)вычислите ㏒81 13*㏒13 27 2)найдите значение выражения 5^㏒5√5 27
4,8(19 оценок)
Открыть все ответы
Ответ:
gilsveta4
gilsveta4
09.01.2023

sin20+sin40-cos10=0

Сложим синусы по формулам суммы:

2sin30*cos10-cos10=0

Вынесем общий множитель:

cos10(2sin30-1)=0

Произведение равно 0, когда хотя бы один из множителей равен 0, в данном случае 

(2sin30-1)=(2*1/2-1)=0

2.sin3a-sina*cos2a

По формулам произведения умножим синус на косинус:

sin3a-1/2 (sin(-a)+sin3a)=sin3a+1/2 sina - 1/2 sin3a=1/2(sin3a+sina)

По формулам суммы сложим синусы:

1/2(sin3a+sina)=1/2*2sin2a*cosa=sin2a*cosa=2sina*cosa*cosa=2sina*cos^2 a

3.\frac{sin4a+2cos3a-sin2a}{cos4a-2sin3a-cos2a}=-ctg3a

Т.к. в правой части ничего изменить нельзя, то будем работать только с левой части уравнения, пытаюсь представить ее в виде -ctg3a.

В числители вычтем синусы, в знаменателе - косинусы.

\frac{sin4a+2cos3a-sin2a}{cos4a-2sin3a-cos2a}=\frac{2sina*cos3a+2cos3a}{-2sin3a*sina-2sin3a}

Вынесем в числителе и знаменателе общий множитель:

\frac{2cos3a(sina+1)}{-2sin3a(sina+1)}

Сокращаем и получаем -cos3a/sin3a=-ctg3a

 

4,7(25 оценок)
Ответ:
lisa20060701
lisa20060701
09.01.2023
1) (16x^2 - 64x) - (9y^2 + 54y) - 161 = 0
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3

2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))

3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
\int { \frac{dy}{y} }=ln|y|
\int { \frac{2xdx}{1+x^2} }=|1+x^2=t;dt=2xdx|=\int \frac{dt}{t} =ln|t|+C=ln|1+x^2|+lnC
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)
4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ