С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.
Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X, который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .
В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x).
а² - квадрат первого числа, (а+1)(а+2) - произведение второго и третьего чисел. По условию задачи квадрат меньшего из них на 47 меньше произведения двух других. Составляем уравнение
(а+1)(а+2)-a²=47;
a²+2a+a+2-a²=47;
3a+2=47;
3a=47-2;
3a=45;
a=45/3=15.
Первое число равно 15, второе число равно 15+1=16, третье число равно 15+2=17.
ответ: 15; 16; 17.
Схема задачи:
Дано: а, а+1, а+2 - последовательные натуральные числа
Известно: а² - квадрат меньшего числа, (а+1)(а+2) - произведение двух других, 47 - разность произведения двух других чисел и меньшего числа
Уравнение: (а+1)(а+2)-а²=47
Решение уравнения: см. выше
ответ: 15; 16; 17.