23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Определим делимое число без остатка 2015 - 215 = 1800 , тогда можно записать 2015 : n = (1800 + 215) : n Таким образом нужно найти натурально число n > 215 на которое делится число 1800, для этого разложим число 1800 на множители 1) 1800 = 2*900 2) 1800 = 3*600 3) 1800 = 4*450 4) 1800 = 5*360 5) 1800 = 6*300 6) 1800 = 8*225
Таким образом получаем все варианты деления числа 2015 на следующее натурально число n: 1) 2015 : 900 = 2 целых 215 остаток 2) 2015 : 600 = 3 целых 215 остаток 3) 2015 : 450 = 4 целых 215 остаток 4) 2015 : 360 = 5 целых 215 остаток 5) 2015 : 300 = 6 целых 215 остаток 6) 2015 : 225 = 8 целых 215 остаток
33x^10+3/2√x