(перед тем, как я отвечу хочу попросить вас подписаться, так я смогу отвечать на ваши вопросы всегда и , оцените это решение! )
«теоремы виета»
примеры:
x2 + 7x + 12 = 0 — это квадратное уравнение;
x2 − 5x + 6 = 0 — тоже ;
2x2 − 6x + 8 = 0 — а вот это нифига не , поскольку коэффициент при x2 равен 2.
~разумеется, любое квадратное уравнение вида ax2 + bx + c = 0 можно сделать — достаточно разделить все коэффициенты на число a. мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.
разделим каждое уравнение на коэффициент при переменной x2. получим:
3x2 − 12x + 18 = 0 ⇒ x2 − 4x + 6 = 0 — разделили все на 3;
−4x2 + 32x + 16 = 0 ⇒ x2 − 8x − 4 = 0 — разделили на −4;
1,5x2 + 7,5x + 3 = 0 ⇒ x2 + 5x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
2x2 + 7x − 11 = 0 ⇒ x2 + 3,5x − 5,5 = 0 — разделили на 2. при этом возникли дробные коэффициенты.
надеюсь, я вам !
Отсюда первое уравнение:
(x + y)*2 = 26
Площадь (S) = ab
Составим второе уравнение:
xy = 30
Теперь можно составить систему уравнений:
(x +y)*2 = 26
xy = 30
2x + 2y = 26
xy = 30
Выразим x из первого уравнения:
2x = 26 - 2y
Обе части можно разделить на 2, чтобы проще было сосчитать:
x = 13 - y
Теперь подставим получившееся выражение во второе уравнение:
(13 - y)y = 30
- y^2 +13y - 30 = 0
D = 169 - 4 *(-1)* (-30) = 169 - 120 = 49.
y1 = (-13 +7)/(-2) = 3
y2 = (-13 - 7)/(-2) = 10
x1 = 13 - 3 = 10
x2 = 13 - 10 = 3
ответ: 10 и 3.