3.. мы знаем, что в десятичных дробях мы можем поставить в конце нуль, много нулей и значение все равно не изменится
если тебе будет проще, то составь координатную прямую
>
-1.3 -1.2 0
а) -1,15
давайте -1.3 и -1.2 запишем как -1.30 и -1.20
>
-1.30 -1.20 -1.15
не подходит
б) -1.25
снова представляем числа в условии с двумя знаками после запятой
это число заключено между числами из условия
в) -1,4
не включено
г) -1.263
представим числа из условия таким образом -1.300 и -1.200
число подходит
4. давайте попробуем опять воспользоваться координатной прямой
>
-900 -800
помним, что чем больше модуль отрицательного числа (число просто, без минуса), тем оно левее, меньше
-839 должно быть больше -900 и при этом меньше -800
на координатной прямой это выглядит примерно так
>
-900 -839 -800
так что, неравенство верно
5. знаки ≥ и ≤ обозначают (больше или равно/меньше или равно) у нас в условии нет того, что числа равны, так что первое и последнее сразу не подходит
"а" находится между 3.5 и 4.6
букву ставим в середину неравенства и получается
3.5<а<4.6
знаки неравенства направлены в сторону "а" , можно увидеть, что первый знак обозначает что а больше 3.5 , а второй что а меньше 4.6
значит, ответ третий
Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz, задана прямая a и точка формула, не лежащая на прямой a. Поставим перед собой задачу: получить уравнение плоскости формула, проходящей через прямую a и точку М3.
Сначала покажем, что существует единственная плоскость, уравнение которой нам требуется составить.
Напомним две аксиомы:
через три различные точки пространства, не лежащие на одной прямой, проходит единственная плоскость;
если две различные точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.
Объяснение:
2)
По формулам Виета:
1*(-15)=-15
3)