М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
алиярсик
алиярсик
26.07.2022 10:59 •  Алгебра

Область определения некоторой функции - множество однозначных натуральных чисел, а значения функции в 2 раза больше соответсвующих значений аргумента. 1) каким задана эта функция? 2) задайте эту функцию формулой

👇
Ответ:
LaGGeRiSTiK
LaGGeRiSTiK
26.07.2022
Областью определения функции являются числа 1,2,3,4,5,6,7,8,9. Областью значений являются числа 2,4,6,8,10,12,14,16,18. 
1. Функция задана словесным образом (с словесного описания).
2. Функция может быть задана формулой y=2*n, где n - натуральное число. причём 1≤n≤9.
4,4(23 оценок)
Открыть все ответы
Ответ:
kucharin
kucharin
26.07.2022
Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).

u'_x=(xz*tg\sqrt{y})'_x=z*tg\sqrt{y}
u'_y=(xz*tg\sqrt{y})'_y=xz*\frac{1}{cos^2\sqrt{y}}*(\sqrt{y})'=\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})}\\u'_z=(xz*tg\sqrt{y})'_z=xtg\sqrt{y}

Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру:
w=2x\rightarrow w'_x=2\\w=yx\rightarrow w'_x=y\ \ \ (w'_y=x)\\w=y+x\rightarrow w'_x=1\ \ \ (w'_y=1)
Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.

Теперь частные производные второго порядка.
Рассмотрим производную по х. Во второй раз мы может взять её опять же  по 3 переменным.
u''_{x^2}=(z*tg\sqrt{y})'_x=0\\u''_{xy}=(z*tg\sqrt{y})'_y=\frac{z}{2\sqrt{y}*cos^2\sqrt{y}}\\u''_{xz}=(z*tg\sqrt{y})'_z=tg\sqrt{y}

Теперь рассматриваем производную по у. Её  2-уй производную берём снова по 3-ём переменным.
u''_{yx}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_x=\frac{z}{2\sqrt{y}*cos^2(\sqrt{y})}

u''_{y^2}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_y=\frac{(xz)'_y*2\sqrt{y}*cos^2(\sqrt{y})-xz*(2\sqrt{y}*cos^2(\sqrt{y}))'_y}{(2\sqrt{y}*cos^2(\sqrt{y}))^2}=\\=\frac{-2xz*(\frac{1}{2\sqrt{y}}*cos^2(\sqrt{y})+\sqrt{y}*2cos(\sqrt{y})*(-sin\sqrt{y})*\frac{1}{2\sqrt{y}})}{4ycos^4(\sqrt{y})}=\\=\frac{-2xz*\frac{cos\sqrt{y}}{2\sqrt{y}}(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4ycos^4(\sqrt{y})}=\frac{-xz(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4\sqrt{y^3}cos^3(\sqrt{y})}\\

u''_{yz}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_z=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}

Заметим что:
u''_{xy}=u''_{yx}
Такие равенства выполняются и для других смешанных производный, то есть:u''_{xz}=u''_{zx}

И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
u''_{zx}=u''_{xz}=tg\sqrt{y}\\u''_{zy}=u''_{yz}=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}\\u''_{z^2}=(xtg(\sqrt{x}))'_z=0

Ну вот и всё. Будут вопросы - спрашивайте.
4,5(86 оценок)
Ответ:
Егор4ik18
Егор4ik18
26.07.2022
Cos²x -cosx -2 > 0 ;  * * * замена   cosx =t  ; |t|≤1 * * *
t² -t -2 >0 ;
(t+1)(t -2) >0 ;
    +         -          +
 (-1) 2

t∈( -∞ ; -1) U (2 ; ∞) . ⇒ cosx  ∈ ( -∞ ; -1) U (2 ; ∞)  невозможно .

ответ: x ∈  ∅ .

sin²x - 2sinx -3 < 0  ;  замена  sinx =t  ; |t|≤1 * * *
t² -2t -3 < 0 ;
(t+1)(t -3) <0 ;
    +          -          +
 (-1) 3
t∈( -1;3)  ⇒ sinx   ∈ ( -1; 3)  учитывая  что sinx ≤1 получается
sinx   ∈ ( -1; 1] .

ответ:   для всех  x ≠ - π/2 +2πk  , k∈Z.

x ∈ R  \  {. -π/2 +2πk  , k∈Z } 
4,6(88 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ