М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shabalin06
shabalin06
23.02.2022 02:08 •  Алгебра

Решить уравнение с дискрименанта подробно: 1)x^4-11x^2+30=0 2)2x^4-5x^2+2=0

👇
Ответ:
мия59
мия59
23.02.2022
X⁴-11x²+30=0   D=121-120=1  √D=1    x²=1/2[11+1]=6
x²=1/2[11+1]=5   x1=√6  x2=-√6  x3=√5   x4=-√5

2x⁴-5x²+2=0   D=25-16=9   √D=3
x²=1/4[5+3]=2    x²=1/4[5-3]=0.5
x1=√2   x2=-√2  x3=√0.5  x4=-√0.5
4,4(54 оценок)
Открыть все ответы
Ответ:
silinskay
silinskay
23.02.2022
Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}},

где \underbrace{99...9}=k, a \underbrace{00...0}=m

Рассмотрим пример:

Дана бесконечная периодическая дробь 2,(25)

Итак, по формуле:

y - целая часть. У нас она равна 2

k- - количество цифр в периоде. У нас их 2

m- количество цифр до периода. У нас их 0

a-  все цифры, включая период, в виде натурального числа. У нас это 25

b- все цифры без периода в виде натурального числа. Их нет.

Итак, получаем:

y=2\\
k=2\\
m=0\\
a=25\\
b=0

Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=2+ \frac{25-0}{99}=2 \frac{2\cdot99+25}{99}= \frac{223}{99}

Необходимо отметить, что  под k подставляется количество 9, а под m -количество нулей. У нас k=2, значит пишем две цифры 9, а m=0, значит, нулей не пишем вообще. Между  k\ u\ m не стоит знак умножения

*****************************************

0,41(6)

y=0\\
k=1\\
m=2\\
a=416\\
b=41

Подставляем:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=0+ \frac{416-41}{900}= \frac{375}{900}= \frac{375:75}{900:75} = \frac{5}{12}

***************************************

3,6(020)

y=3\\
k=3\\
m=1\\
a=6020\\
b=6


Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=3+ \frac{6020-6}{9990}= 3\frac{6014}{9990} = \frac{35984(:2)}{9990(:2)}= \frac{17992}{4995}
4,7(49 оценок)
Ответ:
15кк
15кк
23.02.2022
x^2+y^2-10y=0
x^2+y^2-10y+25=25
x^2+(y-5)^2=5^2
значит заданная окружность - окружность радиуса 5 и с центром в точке О(0;5),

отсюда следует что искомая окружность и заданная не могут касаться внутренне, так как их радиусы одинаковы

значит в данном случае внешнее касание в точке М(3;1)
так как точка касания и центры окружностей лежат на одной пряммой, то
обозначив через А(x;y) центр искомой окружности и используя векторы получим
вектор ОМ=вектор МА
(0-3;5-1)=(3-x;1-y)
-3=3-x;
4=1-y

x=3+3=6
y=1-4=-3
A(6;-3) - центр второй окружности
значит ее уравнение
(x-x_0)^2+(y-y_0^2=R^2
(x-6)^2+(y-(-3))^2=5^2
(x-6)^2+(y+3)^2=25 ( <-- ответ)
----
или
x^2-12x+36+y^2+6y+9=25
x^2-12x+y^2+6y+20=0
4,8(54 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ