а) 1/х + 5х/(х+1) = 5
где х ≠ 0 и (х + 1) ≠ 0 ⇒ х ≠ (-1)
1 · (х + 1) + 5х · х = 5 · х · (х + 1)
х + 1 + 5х² = 5х² + 5х
5х² - 5х² + х - 5х = -1
-4х = -1
х = -1 : (-4)
х = 1/4 или 0,25 (в десятичных дробях)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
б) (3х²-48)/(х+4) = 0
где (х+4) ≠ 0 ⇒ х ≠ (-4)
3х² - 48 = 0 · (х + 4)
3х² - 48 = 0
3х² = 48
х² = 48 : 3
х² = 16
х = √16
х₁ = 4
х₂ = (-4) - не подходит, так как знаменатель не может равняться 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
в) 10/(х-3) - 8/х = 1
где (х - 3) ≠ 0 ⇒ х ≠ 3 и х ≠ 0
10 · х - 8 · (х - 3) = 1 · х · (х - 3)
10х - 8х + 24 = х² - 3х
х² - 3х - 10х + 8х - 24 = 0
х² - 5х - 24 = 0
D = b² - 4ac = (-5)² - 4 · 1 · (-24) = 25 + 96 = 121
√D = √121 = 11
х = (-b±√D)/(2a)
х₁ = (5-11)/(2·1) = (-6)/2 = -3
х² = (5+11)/(2·1) = 16/2 = 8
ответ: (-3; 8).
4
Запишем условие:
lgx + lg(x - 2) = lg(12 - x)
Складываем логарифмы в левой части, тогда:
lgx(x - 2) = lg(12 - x)
Так как 1 основание, решаем как обычное уравнение:
х(х - 2) = 12 - х
Раскороем скобки слева, откуда:
х^2 - 2х = 12 - х
Переносим правую часть влево, тогда:
х^2 - 2х - 12 + х = 0
Приводим подобные:
х^2 - х - 12 = 0
Решаем через дискриминант:
Находим дискриминант:
D = b^2 - 4ac
D = 1 - 4*1*(-12)
D = 1 - (-48)
D = 1 + 48 = 49
sqrt(D) = sqrt(49) = 7
x1 = (-b + sqrt(D))/2a = (1 + 7)/2 = 8/2 = 4
x2 = (-b - sqrt(D))/2a = (1 - 8)/2 = -3,5 - посторонний корень
Проверка:
Проверяем х1:
lg4 + lg(4 - 2) = lg(12 - 4)
lg4 + lg2 = lg8
Складываем логарифмы слева, тогда:
lg(4*2) = lg8
lg8 = lg8
Следовательно, х1 является действительным (правильным) корнем уравнения.
Проверяем х2:
lg(-3,5) + lg(-3,5 - 2) = lg(12 - 3,5)
lg(-3,5) + lg(-5,5) = lg8,5
Складываем логарифмы в левой части, тогда:
lg(19,25) > lg8,5
Следовательно, х2 посторонний корень данного уравнения.