Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
наименьшим положительным периодом функции есть ---------------------------------- наименьший положительный период равен тогда у нас пусть - искомый период, тогда
имеем, что
окончательно
3 перед котангенсом вытягивает график в три раза вдоль оси ОУ по отношению к графику просто котангенса не влияя на период 8-ка - сдвигает график относительно оси OX на 8 единиц вверх, также не влияя на период ----------------------------------
проанализируем какова область определения функции:
Как видим, запрещенные значения - это симметричное относительно начала координат множество точек, что означает, что и область определения функции также симметрична относительно начала координат. Это означает, что есть смысл проверять функцию на парность, дальше.
на второй х-2