сумма корней квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену .
в случае квадратного уравнения формулы виета имеют вид:
значимость теоремы виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные многочлены от двух переменных и . теорема виета позволяет угадывать целые корни квадратного трехчлена.
. используя теорему виета, найти корни уравнения
решение. согласно теореме виета, имеем, что
подбираем значения и , которые удовлетворяют этим равенствам. легко видеть, что им удовлетворяют значения
и
ответ. корни уравнения ,
обратная теорема виета
если числа и удовлетворяют соотношениям , то они удовлетворяют квадратному уравнению , то есть являются его корнями.
. зная, что числа и - корни некоторого квадратного уравнения, составить само это уравнение.
решение. пусть искомое квадратное уравнение имеет вид:
тогда, согласно теореме виета, его коэффициенты связаны с корнями следующими соотношениями:
тогда
то есть искомое уравнение
ответ.
общая формулировка теоремы виета
если - корни многочлена (каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней, а именно:
иначе говоря, произведение равно сумме всех возможных произведений из корней.
сумма корней квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену .
в случае квадратного уравнения формулы виета имеют вид:
значимость теоремы виета заключается в том, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные многочлены от двух переменных и . теорема виета позволяет угадывать целые корни квадратного трехчлена.
. используя теорему виета, найти корни уравнения
решение. согласно теореме виета, имеем, что
подбираем значения и , которые удовлетворяют этим равенствам. легко видеть, что им удовлетворяют значения
и
ответ. корни уравнения ,
обратная теорема виета
если числа и удовлетворяют соотношениям , то они удовлетворяют квадратному уравнению , то есть являются его корнями.
. зная, что числа и - корни некоторого квадратного уравнения, составить само это уравнение.
решение. пусть искомое квадратное уравнение имеет вид:
тогда, согласно теореме виета, его коэффициенты связаны с корнями следующими соотношениями:
тогда
то есть искомое уравнение
ответ.
общая формулировка теоремы виета
если - корни многочлена (каждый корень взят соответствующее его кратности число раз), то коэффициенты выражаются в виде симметрических многочленов от корней, а именно:
иначе говоря, произведение равно сумме всех возможных произведений из корней.
78/( Х + 2 ) + 44/( Х - 2 ) = 120/Х
Х не равен ( - 2 ) ; 2 ; 0
Общий знаменатель х( х^2 - 4 )
78х( Х - 2 ) + 44х( Х + 2 ) = 120( х^2 - 4 )
78х^2 - 156х + 44х^2 + 88х = 120х^2 - 480
122х^2 - 68х = 120х^2 - 480
2х^2 - 68х + 480 = 0
2( х^2 - 34х + 240 ) = 0
D = 1156 - 960 = 196 = 14^2
X1 = ( 34 + 14 ) : 2 = 24 ( км/час )
Х2 = ( 34 - 14 ) : 2 = 10 ( < 15 по условию, не подходит )
ответ 24 км/час