Объяснение:Найти производную следующих функций:
1) у = 4х^4 + 3х; y'= (4x⁴+3x)'= 16x³+3
2) у = 12х^2 - х – 2; y'= (12x²-x-2)' =24x - 1
3) у = -4х^9 - 8х^4 – 6х + 22; y' = (-4x⁹-8x⁴-6x+22)= - 36x⁸-32x³-6
4) у= 8х^7 - 14х^5 + 5х - 10; y' =(8x⁷-14x⁵+5x-10)'= 56x⁶-70x⁴+5
5) у = 6х^3 + (1/9)х^3 + 9х; y'= 18x²+(1/3)x²+9
6) у = 19х^4 + 3х^8 – 22. y'=76x³+24x⁷
«Производная степенной, логарифмической и показательной функций»
Найти производную следующих функций:
1. у = (х - 2)^8 y' = 8(x-2)⁷(x-2)'=8(x-2)⁷
2. у = (х2 + 2х)^3 y'= 3(x²+2x)²(x²+2x)'= 3(x²+2x)(x+2)=3x(x+2)²= 3x(x²+4x+4)=3x³+12x²+12x
3. у = (х +3)^4 y'=4(x+3)³(x+3)'= 4(x+3)³ =4( x³+9x²+27x+27)
4. у = 41^х y' = 41ˣ ln41
5. у = (3 + 5х + х3)^2 y' = 2( x³+5x+3)( x³+5x+3)'= 2( x³+5x+3)(2x+5)
а) Так как знаменатели дробей равны, можем приравнять числители:
х² = 5х - 6
х² - 5х + 6 = 0, получили квадратное уравнение. Ищем корни.
х первое, второе = (5 + - √25-24) : 2
х первое = 6 : 2 = 3 х второе = 4 : 2 = 2
b) Здесь немного изменим знаменатель, чтобы приравнять числители:
5 - х = -х + 5 = - (х - 5)
Подставляем изменённый второй знаменатель во вторую дробь, она сразу становится со знаком -
Сейчас можно приравнять числители.
х² - 6х = -5
х² - 6х + 5 = 0 Получили квадратное уравнение, ищем корни:
х первое, второе = (6 + - √36 -20) : 2
х первое = 10 : 2 = 5 х второе = 2 : 2 = 1
c) Решено верно, проверено)
Объяснение:
а) (3-5х)(х+11) - 33 = 3х + 3*11 - 5х * х -5х *11 - 33 =
= 3х + 33 - 5х² - 55х - 33 = - 5х² - 52х
можно еще вынести общий множитель :
= - х (5х +52)
б)
5а×2 + (11+а)(3-5а) = 10а + 33 - 55а +3а - 5а² =
= -5а² - 42а +33
или
5а² + (11+а)(3-5а) = 5а² + 33 - 55а +3а -5а²=
= -52а + 33
в следующий раз используй знак степени " ^ " , например:
а^2 - это a во 2-й степени
у^3 - это у в 3 -ей степени и т.д.
в)
(у×2 + 4у) - (у-3)(у+7) = (2у +4у) - (у² +7у -3у -21)=
= 6у - (у² +4у -21) = 6у -у² -4у +21 =
= -у² +2у +21
или
(у² +4у) - (у-3)(у+7) = у² +4у - (у² +7у -3у -21) =
= у² + 4у - (у² +4у -21) = у² +4у -у² -4у +21 =
= 21
г) (р+3с)с - (3с+р)(с-р) = (3с + р) × с - (3с+р)×(с-р) =
= (3с+р)(с- (с-р)) = (3с+р)(с-с+р) = р(3с+р) =
= 3ср + р²
№2.
a) 3а(х+у) - b(x+y) = (3a-b)(x+y)
б)(c+8) - c(c+8) = 1×(c+8) - c×(c+8) = (1-c)(c+8)
в) 3(b-5) - a(5-b) = 3(b-5) - (-a)(b-5) =
= 3(b-5) + a(b-5) = (3+а)(b-5)
г) с-d +a(d-c) = 1(c-d) -a(c-d) =
= (1-a)(c-d)
№3.
а) 3а - 3с +ха -хс = 3(а-с) + х(а-с) =
= (3+х)(а-с)
б) 4а+by + ay +4b = (4a+4b) + (ay+by) =
= 4(a+b) + y(a+b) = (a+b)(4+y)
в) ab -ac -7b +14c =
если условие записано верно , то многочлен в "чистом виде" на множители не раскладывается:
= а (b-c) - 7b +7c +7c =
= a(b-c) - 7(b-c) + 7c =
= (a-7)(b-c) + 7c
но! если условие выглядело так : ab -2ac -7b +14c , то получится совсем другой результат:
ab - 2ac -7b +14c = a(b -2c) -7(b - 2c) = (a-7)(b-2c)