1. а) 2x – 3(y – 1) + 2 = 0; 2x -3y +5=0 ;
Чтобы система
а₁х+b₁y+c₁=0
a₂x+b₂y+c₂=0
имела бесконечное множество решений, надо, чтобы прямые сливались, т.е. а₁/а₂=b₁/b₂=c₁/c₂, в вашем случае
2/4=-3/(-6)=5/(10), т.е. коэффициенты были пропорциональны, например, это второе уравнение 4х-6у+10=0
б) система не имеет решений, когда выполняется условие
а₁/а₂=b₁/b₂≠c₁/c₂, т.е. 2/4=-3/(-6)≠5/15
т.е. второе уравнение 4х-6у+15=0;
4х-6у+10=0
4х-6у+15=0
2. По рисунку вижу две прямые, у=0.5х+2 и у=-2х+7, и система, соответственно
у=0.5х+2
у=-2х+7, решением которой является точка (2;3), это по графикам линейных функций видно. Проверим?) подставим х=2; у=3 в оба уравнения, получим
3=0.5*2+2
3=-2*2+7, все верно. Уравнения прямых можно было не писать, я глянул на их угловые коэффициенты , и составил уравнения прямых, проходящих через две точки, получил у=0.5х+2 и у=-2х+7; но еще раз подчеркиваю, это только для того, чтобы Вас убедить, что решение на рисунке совпадает с точкой пересечения.
ответ х=2; у=3.
3. Чтобы решить систему, упростим ее предварительно, построим прямые и найдем решение. упростим первое уравнение.
3х+3у-2х=3+2у; у=-х+3; упростим второе уравнение.
-2у-4х=-3х-5; 2у=-х+5; Невооруженным глазом видим решение. Это точка (1;2), проверим графически. Строим каждую прямую, предварительно выбрав по две точки, находим точку пересечения, это и будет ответ. Далее - во вложении.
1
(x+3)^2 * (x-2) < 0
произведение меньше 0, если множители имеют разные знаки + и -
множитель (x+3)^2 = 0 =>(x+3)^2 * (x-2) = 0 если х= -3
исключаем х= -3 , так как по условию произведение меньше 0
при любых остальных х множитель (x+3)^2 - имеет положительное значение
значит множитель (x-2) должен иметь отрицательное значение
(x-2) < 0 при х < 2 , кроме х= -3
ответ x Є (-∞; -3) U (-3; 2)
2
1\ √(5x-2)
имеет смысл, если подкоренное выражение положительное значение или 0
5x-2 ≥ 0 ; x ≥ 2/5
x =2/5 придется исключить, т.к. на 0 делить нельзя
ответ x Є (2/5; +∞)
3
√ (x^2+6x )
имеет смысл, если подкоренное выражение положительное значение или 0
x^2+6x ≥ 0 ; x *(x+6) ≥ 0
произведение ,больше 0, если множители имеют одинаковые знаки + и -
произведение ,равно 0, если один из множителей равен 0
тогда
{ x ≥ 0
{ (x+6) ≥ 0 ; x ≥ -6
решение системы x ≥ 0
или
{ x ≤ 0
{ (x+6) ≤ 0 ; x ≤ - 6
решение системы x ≤ -6
ответ x Є (-∞; -6] U [0; +∞)