Выражение: 51*cos(4)/sin(86)+8
ответ: 51*cos(4)/sin(86)+8
По шагам:
1. 51*0.997564050259824/sin(86)+8
1.1. cos(4)=0.997564050259824
2. 50.875766563251/sin(86)+8
2.1. 51*0.997564050259824~~50.875766563251
X0.997564050259824
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _5_1_ _
0997564050259824
4_9_8_7_8_2_0_2_5_1_2_9_9_1_2_0_ _ _
50.875766563251024
3. 50.875766563251/0.997564050259824+8
3.1. sin(86)=0.997564050259824
4. 51+8
4.1. 50.875766563251/0.997564050259824~~51
50.875766563251000|0_._9_9_7_5_6_4_0_5_0_2_5_9_8_2_4_ _
4_9_8_7_8_2_0_2_5_1_2_9_9_1_2_0_ |50.9
9975640502598000
8_9_7_8_0_7_6_4_5_2_3_3_8_4_1_6_
997564050259584
5. 59
5.1. 51+8=59
1) Возьмём числитель первой дроби за X. Тогда знаменатель будет равен X+3. Первая дробь будет равна Если увеличить числитель первой дроби на два и знаменатель на четыре, то вторая дробь будет равна
В условии задания сказано, что вторая дробь больше первой на
, значит разность второй и первой дроби будет равна одной восьмой. Составим уравнение.
-
=
Чтобы избавиться от дробей умножаем каждое число на (x+7)·(x+3)·8
(x+2)·(x+3)·8 - x·(x+7)·8=(x+7)·(x+3)
(x²+3x+2x+6)·8 - (x²+7x)·8=(x+7)·(x+3)
8x²+24x+16x+48-8x²-56x=x²+3x+7x+21 Переносим всё в левую сторону и приравниваем выражение к нулю. Упростив, получим:
-x²-26+27=0
D=676+108=784;28²
D>0
x1==
= -27
x2==
=1
Так как у нас получилось два корня, нужно подставить получившиеся значение в исходное выражение и найти верный ответ.
а) Возьмём первый корень, равный -27 и подставим в изначальное выражение.
-
=
-
=
-
=
-
=
-
=
-
=
=
⇒ Корень -27 подходит. Значит изначальная дробь равна
=
=1
б) Возьмём второй корень, равный 1 и подставим в изначальное уравнение
-
=
-
=
-
=
-
=
⇒ Корень 1 также подходит. Значит исходное уравнение равно
Так как при проверке оба корня оказались верны, то в ответе будет две дроби.
2)
Рассмотрим движение машины в двух случаях: Как она должна была двигаться изначально и как она двигалась в итоге. Путь, пройденный автомобилем, не изменился. Скорость увеличилась на 10 км/ч. Так как автомобиль прибыл быстрее запланированного, то разница между временем, затраченным в первом случае, и временем, затраченным во втором случае, будет равна 1 часу. Составим уравнение.
-
=1 Избавимся от дробей, умножив каждое число на x·(x+10)
200·(x+10) - 200x=x²+10x
200x+2000-200x - x²-10x=0
-x²-10x+2000=0 Чтобы применить теорему Виета умножим каждое число на -1
x²+10x-2000=0
x1+x2= -10
x1·x2= -2000
x1= -20(Этот корень неверен, так как скорость не может быть отрицательной)
x2=10(Это изначальная скорость автомобиля)
Автомобиль должен был двигаться со скоростью 10+10=20 км/ч
5y-15=0
y=3