2) Область определения: Выражение под корнем должно быть неотрицательным 5x^2 + 2x + 1 >= 0 D = 4 - 4*5*1 = 4 - 20 < 0 - корней нет, оно положительно при любом х. 3) Корень арифметический, то есть неотрицательный, поэтому выражение справа тоже должно быть неотрицательным -x^2 - 0,4x + 1,8 >= 0 Умножаем на -5, при этом знак неравенства меняется 5x^2 + 2x - 9 <= 0 D = 4 - 4*5*(-9) = 4 + 180 = 184 = (2√46)^2 x1 = (-2 - 2√46)/10 = (-1-√46)/5 ~ -1,56; x2 = (-1+√46)/5 ~ 1,16 x ∈ [(-1-√46)/5; (-1+√46)/5]
4) Теперь решаем само уравнение 0,6*√(5x^2 + 2x + 1) = -0,2*(5x^2 + 2x - 9) Сокращаем на 0,2 3√(5x^2 + 2x + 1) = 5x^2 + 2x - 9 Замена 5x^2 + 2x + 1 = t > 0 при любом х, это мы уже знаем из п.2) 3√t = t - 10 Возводим в квадрат 9t = t^2 - 20t + 100 t^2 - 29t + 100 = 0 (t - 4)(t - 25) = 0
X=1 корень, так как 3+6+16+16-44=0 Разложим на множители, выделяя при этом выражения (х-1) (х²-х), (х³-х²) и (х⁴-х³) 3х⁴-3х³+3х³+6х³-9х²+28х²-28х+28х+16х-44=0 (3х⁴-3х³)+(9х³-9х²)+(28х²-28х)+(44х-44)=0 3х³(х-1)+9х²(х-1)+28х(х-1)+44(х-1)=0 (х-1)(3х³+9х²+28х+44)=0 ( можно было разделить углом) х-1=0 или 3х³+9х²+28х+44=0 х=1 х=-2 - корень уравнения 3х³+9х²+28х+44=0, так как 3·(-8)+9·4+28·(-2)+44=0
Постараемся тоже разложить на множители, выделяя множитель (х+2) или (х²+2х) или (х³+2х²) 3х³+6х²+3х²+6х+22х+44=0 3х²(х+2)+3х(х+2)+22(х+2)=0 (х+2)(3х²+3х+22)=0 х+2=0 х=-2 Уравнение 3х²+3х+22=0 не имеет корней, так как дискриминант этого уравнения D=9-4·22<0 ответ. х=1 или х=-2
Если графики пересекаются, значит имеют общую точку (х;у). Тогда можно сделать вывод, что 3х-3=х-1 (х-1 взято из у+1-х=0, если у оставить в одной стороне, а другое перенести, то получится х-1) Решаем как обычное линейное уравнение 3х-3=х-1 2х=2 х=1 Подставим значение х в любое из уравнений, получится что у=х-1 у=1-1 у=0 Подставляем значения как координаты точки и пересечения и получаем, что (1;0) точка пересечения
x^2 + x = 0,6x + 1,8 - 0,6*√(5x^2 + 2x + 1)
Переносим корень налево, а все остальное направо
0,6*√(5x^2 + 2x + 1) = -x^2 - x + 0,6x + 1,8 = -x^2 - 0,4x + 1,8
2) Область определения:
Выражение под корнем должно быть неотрицательным
5x^2 + 2x + 1 >= 0
D = 4 - 4*5*1 = 4 - 20 < 0 - корней нет, оно положительно при любом х.
3) Корень арифметический, то есть неотрицательный, поэтому выражение справа тоже должно быть неотрицательным
-x^2 - 0,4x + 1,8 >= 0
Умножаем на -5, при этом знак неравенства меняется
5x^2 + 2x - 9 <= 0
D = 4 - 4*5*(-9) = 4 + 180 = 184 = (2√46)^2
x1 = (-2 - 2√46)/10 = (-1-√46)/5 ~ -1,56;
x2 = (-1+√46)/5 ~ 1,16
x ∈ [(-1-√46)/5; (-1+√46)/5]
4) Теперь решаем само уравнение
0,6*√(5x^2 + 2x + 1) = -0,2*(5x^2 + 2x - 9)
Сокращаем на 0,2
3√(5x^2 + 2x + 1) = 5x^2 + 2x - 9
Замена 5x^2 + 2x + 1 = t > 0 при любом х, это мы уже знаем из п.2)
3√t = t - 10
Возводим в квадрат
9t = t^2 - 20t + 100
t^2 - 29t + 100 = 0
(t - 4)(t - 25) = 0
5) Обратная замена
t1 = 5x^2 + 2x + 1 = 4
5x^2 + 2x - 3 = 0
(x + 1)(5x - 3) = 0
x1 = -1; x2 = 3/5 = 0,6 - оба корня попадают в Обл. Опр.
t2 = 5x^2 + 2x + 1 = 25
5x^2 + 2x - 24 = 0
(x - 2)(5x + 12) = 0
x3 = -12/5 = -2,4; x4 = 2 - оба корня не попадают в Обл. Опр.
ответ: x1 = -1; x2 = 0,6