Площадь области, которую нужно засыпать песком = площадь квадрата всей площадки – площадь квадрата под качели.
Sквадрата = а^2, где а — сторона квадрата.
S квадрата всей площадки = (12.4м)^2
S квадрата качелей = (2.4м)^2
Воспользуемся формулой разности квадратов: a^2 – b^2 = (a – b)(a + b)
S искомой области = (12.4м)^2 – (2.4м)^2 = (12.4м – 2.4м)(12.4м + 2.4м) = 10м * 14.8м = 148 м^2
Или "вручную", без формулы:
12.4^2 – 2.4^2 = (124/10)^2 – (24/10)^2 = (62/5)^2 – (12/5)^2 = (62^2)/(5^2) – (12^2)/(5^2) = (62^2 – 12^2) / 5^2 = (3844 – 144) / 25 = 3700 / 25 = (:5) = 740 / 5 = (:5) = 148
1
x^2+х-а=0 ; x^2+pх-q=0 ; p=1 ; q=a ; x1=4
теорема виета для приведенного квадратного уравнения
x1+x2 =-p = -1 ; 4+x2 = -1 ; x2 = -5
x1*x2 =q =a ; 4 *(-5) = -20
ОТВЕТ
x2 = -5
a= -20
2
x1=-5 ; x2 = 8
(x+5) (x-8) = x^2-8x+5x -40 = x^2-3x-40
5
то же самое ,что 2
3
а)
x^2/ (x+6) = 1/2 ;
ОДЗ x+6 = 0 ; x = -6 (- 6 исключаем из корней)
2x^2 = (x+6) ;
2x^2 - x- 6 =0;
D = (-1)^2 - 4*2(-6) =1+48=49 ; √D = √49 = -/+7
x1 = (1 -7 )/ (2*2)=-6/4 =-3/2 =- 1.5
x2 = (1 +7 )/ (2*2)=8/4 =2
ОТВЕТ -1.5 ; 2
б)
(x^2-x) / (x+3) = 12 / (x+3)
ОДЗ x+3 = 0 ; x = -3 (- 3 исключаем из корней)
(x^2-x) = 12
x^2-x - 12 =0
D = (-1)^2 - 4 *1*(-12)=49 ; √D = √49 = -/+7
x1 = (1-7) / 2 = -6/2 = -3 не входит в ОДЗ
x2 = (1+7) / 2 = 8/2 = 4
ОТВЕТ 4
2)а в квадрате+ 4а-4а-16-6а+2а в квадрате=а в крадрате-16-6а
3)р квадрат-11р+3р-33+п квадрат+12р+36=2р квадрат+4р+3