1. Дано: |y=3x-1 |x+2y=5 Решение Подставим первое уравнение во второе:
Подставляем полученное значение в первое уравнение: y=3x-1, при x=1 y=3-1 y=2 ответ: (1;2)
2. Дано |x+5y=13 |3x-y=-9 Решение Выразим из первого уравнения переменную x: x=13-5y
Подставим полученное выражение во второе уравнение: 3*(13-5y)-y=-9 Раскроем скобки: 39-15y-y=-9 Перенесем неизвестное значение в левую часть, а константы в правую: -16y=-9-39 y=(-48)/(-16) y=3
Подставим полученное значение в первое преобразованное уравнение: x=13-5y, при y=3 x=13-5*3 x=13-15 x=-2
1. Дано: |y=3x-1 |x+2y=5 Решение Подставим первое уравнение во второе:
Подставляем полученное значение в первое уравнение: y=3x-1, при x=1 y=3-1 y=2 ответ: (1;2)
2. Дано |x+5y=13 |3x-y=-9 Решение Выразим из первого уравнения переменную x: x=13-5y
Подставим полученное выражение во второе уравнение: 3*(13-5y)-y=-9 Раскроем скобки: 39-15y-y=-9 Перенесем неизвестное значение в левую часть, а константы в правую: -16y=-9-39 y=(-48)/(-16) y=3
Подставим полученное значение в первое преобразованное уравнение: x=13-5y, при y=3 x=13-5*3 x=13-15 x=-2
2^ ( - x) = t ==>
t^2 - 7t - 6 = 0
D = 49 + 24 = 73
t1 = ( 7 + √73)/2 ≈ 7,77
t2 = (7 - √73)/2 ≈ - 0,77 (не удовлетворяет условию)
2^( - x) = ( 7 + √73)/2
log2 2^(-x) = log2 ( 7 + √73)/2
- x = log2 ( 7 + √73)/2
x = - log(2, ( 7 + √73)/2) ≈ - 2,9583