М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dftrek
dftrek
03.05.2022 17:06 •  Алгебра

Чтоб не пойти в школу если я скажу что по семейным обстоятельствам, то она спросит по каким семейным обстоятельствам а я не знаю что сказать нашей классной

👇
Ответ:
Gavrik2017
Gavrik2017
03.05.2022
Скажи, что кто-то из родных заболел ну или скажи что проспал, ну или банально заболел возьми градусник и к батареи но долго не держи в от взорваться может если тебе 14 скажи, что на паспорт едешь фотографии делать
4,8(22 оценок)
Открыть все ответы
Ответ:
Davidggg
Davidggg
03.05.2022
1)
выбрать двух человек с учетом их порядка пусть в классе х чел т.к. 2 чел из х чел, то это х*(х-1) = 756 х^2 -х -756 =0 Д=1+4*756 =3025 х=-27 не удовлетворяет усл задачи х2=28 ответ: 28 чел
2)" х" всего было туристов
тогда
C(4;x) = x! / (x-4)!*4! число выбора 4 дежурных
C(2;x) = x! / (x-2)! * 2! число выбора 2 дежурных
по условию задачи

C(4;x) = 13C(2;x)
x! / (x-4)!*4! = 13 * x! / (x-2)! * 2!
13*(x-4)!*24 = (x-2)! * 2
13*12 = (x-2)(x-3)
х² -5х - 150 =0
x = 15

Замечание
(x-4)! = 1*2*3*4* ...* (х-4)
(x-2)! = 1*2*3*4**(х-4)*(х-3)*(х-2)

ответ 15 туристов было в группе
4,4(55 оценок)
Ответ:
gigi24
gigi24
03.05.2022

.

Объяснение:

0

Перенумеруем все города. Для городов i, j направим дорогу из города с меньшим номером в город с большим номером. Тогда при проезде по дорогам мы всегда приезжаем в города с большими номерами, и обратно не возвращаемся.

Из города 1 можно добраться до всех, а из n нельзя выехать. Единственный путь, проходящий все города -- это 1-2-...-n.

Теперь надо показать, что такая конструкция всего одна с точностью до перенумерации городов. Из этого будет следовать, что её осуществить ровно n!.

Для начала можно доказать, что имеется город, из которого нельзя выехать. В противном случае мы можем бесконечно долго путешествовать, и какие-то посещаемые города при этом повторятся. Это значит, что основное условие нарушается. Городу с таким свойством присвоим значение n. Он всего один, так как из остальных городов идут стрелки в n.

Далее применяем индукцию, отбрасывая город n и стрелки в него. Для оставшихся городов формируется (по предположению) единственная нумерация 1,2,...,n-1 такая, что из i в j идёт стрелка <=> i < j. Поскольку n больше всех остальных чисел, после возвращения n-го города на место всё сохранится.

Можно и без индукции. Для каждого города рассмотрим путь максимальной длины по стрелкам, оканчивающийся в данном городе. Длину такого пути ему и сопоставим. Значения могут приниматься от 0 до n-1. При этом они не повторяются: если для двух городов значения равны k, то из одного из них попадаем по ребру в другой, что увеличивает длину до k+1. Таким образом, все значения используются ровно по разу. Увеличивая их на 1, имеем описанную выше нумерацию. Ясно также, что ребро всегда идёт из i в j только при i < j.

4,8(60 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ