1) D(f) ∈ (-∞; +∞) 2) E(f) ∈ (-∞; +∞) 3) Нули функции: x³ - 3x + 2 = 0 (x-1)²(x+2) = 0 x = -2 x = 1 f(x) = 0 при x = -2; 1 4) Функция больше/меньше 0. Определяется с метода интервалов. f(x) > 0 при x ∈ (-2; 1) ∪ (1; +∞) f(x) < 0 при x ∈ (-∞; -2) 5) Возрастание/убывание функции Найдём производную, приравняем к нулю, после определим знаки с метода интервалов. f'(x) = 3x² - 3 3x² - 3 = 0 3(x² - 1) = 0 x = 1 x = -1 f возрастает при x ∈ (-∞; -1) ∪ (1; +∞) f убывает при x ∈ (-1; 1) 6) Точек максимума и минимума нет.
Пусть первая труба пропускает V литров воды за 1 минуту, тогда вторая - V+1 литров. Резервуар объёмом 110 литров первая труба наполнит за время t=110/V минут, а резервуар объёмом 99 литров вторая труба наполнит за время 99/(V+1) минут. По условию, 110/V=99/(V+1)+2. Приводя уравнение к общему знаменателю V*(V+1) и приравнивая числители получившихся дробей, приходим к уравнению 110*(V+1)=99*V+2*V*(V+1), или 2*V²-9*V-110=0. Дискриминант D=81+880=961=31², V1=(9+31)/4=10 литров, V2=(9-31)/4=-11/2 литра. Но так как V>0, то V=10 литров. ответ: 10 литров.
Пусть х литров воды в минуту пропускает вторая труба, тогда первая будет пропускать х-1 литров воды в минуту. Первая труба заполнит резервуар объемом 110 литров за минут; вторая - за минут, что на 1 минуту быстрее. Составим и решим уравнение: - = 1 (умножим все на х(х-1), чтобы избавиться от дробей)
- = 1×x(x-1) 110x-110(x-1)=x²-x 110x-110х+110-х²+х=0 х²-х-110=0 D=b²-4ac=(-1)²-4×1×(-110)=1+440=441 (√441=21) x₁= = = 11 x₂= = = -10 - не подходит, поскольку х<0 ответ: вторая труба пропускает 11 литров в минуту.
f'(x) = 1/4 * (cosxsinx + sinxcosx) = 1/4 * sin(2x)
f(x) = x³ - 3x + 2
1) D(f) ∈ (-∞; +∞)
2) E(f) ∈ (-∞; +∞)
3) Нули функции:
x³ - 3x + 2 = 0
(x-1)²(x+2) = 0
x = -2
x = 1
f(x) = 0 при x = -2; 1
4) Функция больше/меньше 0.
Определяется с метода интервалов.
f(x) > 0 при x ∈ (-2; 1) ∪ (1; +∞)
f(x) < 0 при x ∈ (-∞; -2)
5) Возрастание/убывание функции
Найдём производную, приравняем к нулю, после определим знаки с метода интервалов.
f'(x) = 3x² - 3
3x² - 3 = 0
3(x² - 1) = 0
x = 1
x = -1
f возрастает при x ∈ (-∞; -1) ∪ (1; +∞)
f убывает при x ∈ (-1; 1)
6) Точек максимума и минимума нет.