Алгоритм решения стандартен для подобных задач. 1)Находим производную 2)Там, где производная больше 0, там функция возрастает, где меньше 0, там убывает. Итак, найдём производную:
y' = 3x^2 - 2bx + 3 Функция возрастает на всей числовой прямой, следовательно, чтобы найти значение b, необходим ответить на следующий вопрос: при каком значении b неравенство 3x^2 - 2bx + 3 > 0 выполняется при любом x. Это задача несколько иного плана, останавливаться на ней не буду здесь, решив её, мы получим нужные значения b. Мог бы остановиться на этой задаче, но места не хватит здесь, это задача повышенного уровня сложности и имеет довольно длинное обоснование.
Рассматривая линейную функцию вида y=kx+m, особо выделяют случай, когда m=0. Тогда линейная функция принимает вид y=kx. Графиком линейной функции y=kx является прямая, проходящая через начало координат. Эта прямая является графиком линейной функции y=kx, так как проходит через начало координат. Нужно лишь определить значение коэффициента k.Из формулы линейной функции y=kx получим, что k=yx. Поэтому, для определения коэффициента k достаточно взять любую точку на прямой и найти отношение ординаты этой точки к её абсциссе. Прямая проходит через точку M(4;2), а для этой точки имеем 24=0,5. Значит, k=0,5 и данная прямая является графиком линейной функции y=0,5x. График линейной функции y=kx обычно строят так: берут точку (1;k) (если x=1, то из равенства y=kx находим, что y=k) и проводят прямую через эту точку и начало координат.
Всего 6.