А) Время движения скорого поезда: x - 1/3 (ч) б) Путь, пройденный товарным поездом до встречи со скорым: S₁ = v₁x = 66x (км) в) Путь, пройденный скорым поездом до встречи с товарным: S₂ = v₂(x - 1/3) = 90(x - 1/3) = 90x - 30 Так как расстояние S = АВ = 256 км, то: S = S₁+S₂ 256 = 66x + 90x - 30 156x = 286 x = 1 5/6 (ч) Таким образом, товарный поезд находился в пути до встречи со скорым 1 час 50 мин и за это время: S₁ = v₁x = 66 * 1 5/6 = 121 (км) Скорый поезд находился в пути до встречи с товарным 1 час 30 мин и за это время S₂ = v₂(x - 1/3) = 90 * 1 5/6 - 30 = 165 - 30 = 135 (км)
ответ: поезда встретятся на расстоянии 121 км от станции А и 135 км от станции В.
Решение: Обозначим длину прямоугольника за х, а ширину за у, тогда согласно условия задачи зная формулу площади прямоугольника: S=a*b,где а-длина, а в -ширина прямоугольника, составим систему уравнений: х-у=3 (х-2)*(у+4)-х*у=8 х-2- площадь прямоугольника до измения длины и ширины, а (х-2*)*(у+4) -площадь прямоугольника при изменения его длины и ширины Решим систему уравнений, из первого уравнения х=3+у Подставим во второе уравнение данное х (3+у-2)*(у+4)-(3+у)*у=8 (1+у)*(у+4)-3у-у^2=8 у+y^2+4+4y-3y-y^2=8 2y=8-4 2y=4 y=2, тогда х=3+2=5 Первоначальная площадь прямоугольника равна 5*2=10 ответ: 10см^2
х(х-1)-3(х-1)=0 (х-1)(х-3)=0
х1=1 х2=3
х^2-4х-5=0
х^2+х-5х-5=0
х(х+1)-5(х+1)=0
х+1)(х-5=0
х1=1 х2=5