Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
63²-53²=(63-53)*(63+53)=10*116=1160
117²-17²=(117-17)*(117+17)=100*134=13400
164²-64²=(164-64)*(164+64)=100*228=2280
125²-25²=(125-25)*(125+25)=100*150=15000
14²-86²=(14-86)*(14+86)=(-72)*100=-7200
37²-63²=(37-63)*(37+63)=(-26)*100=-2600
81²-19²=(81-19)*(81+19)=62*100=6200
77²-23²=(77-23)*(77+23)=54*100=5400
68²-32²=(68-32)*(68+32)=36*100=3600
55²-53²=(55-53)*(55+53)=2*108=216
41²-21²=(41-21)*(41+21)=20*62=1240
35²-55²=(35-55)*(35+55)=(-20)*90=-1800
22²-42²=(22-42)*(22+42)=(-20)*64=-1280