М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ildarka34
ildarka34
12.03.2023 15:45 •  Алгебра

Найти сумму целых решений неравенства x^2-5< 0

👇
Ответ:
Рикон1
Рикон1
12.03.2023
Решение задания смотри на фотографии
Найти сумму целых решений неравенства x^2-5< 0
4,5(32 оценок)
Открыть все ответы
Ответ:
2004пупик4
2004пупик4
12.03.2023
(1) 1/5 в степени х+4 = (1/5) в -2 степени
х+4= -2,  х= -8
2) 1/2 в степени х-4 = (1/2) в -6 степени
х-4=-6, х= -2
3) 1/3 = (1/3) в степени -10х+3
1=-10х+3, х= 1/5
4) 4 в степени 5х-10 = 4 в степени 5
5х-10=1, х= 2,2
5) 0,1 в степени х-5 = 0,1 в степени -2
х-5=-2, х= 3
6) 1/5 в степени 2х-2 = (1/5) в степени -4
2х-2=-4, х= -1
7) 1/4 в степени х-4 = (1/4) в степени -3х
х-4=-3х, х=1
8) 1/11 в степени х-5 = (1/11) в степени -2
х-5=-2, х=3
9) 7 в степени 2х-2 = 7 в степени -1
2х-2=-1, х= 0,5
10) 1/4 в степени 2х-2 = 1/4 в степени -4
2х-2=-4, х=-1
4,5(19 оценок)
Ответ:
danil200804
danil200804
12.03.2023
1) Область определения: x ∈ (-∞; ∞).
2) Четность-нечетность:
f(x) = 3x^3-15x^2+36x-5
f(-x) = 3(-x)^3-15(-x)^2-36x-5 = -3x^3-15x^2-36x-5
-f(x) = -3x^3+15x^2-36x+5
Т.к. f(x) \neq f(-x) и f(-x) \neq -f(x), то функция является функцией общего вида.
3) Точки пересечения с Ox. Решим исходное уравнение при y = 0. (метод решения: Виета-Кардано)
Получим один корень: x = 0.148 - абсцисса точки пересечения графка с осью Ox. Координаты точки: (0.148; 0)

Точка пересечения с Oy. Найдем y, подставив в уравнение x = 0. Получим: y = -5. Координаты точки: (0, -5).

4) Так как функция кубическая, то точек экстремума не имеет.

5) Первая производная.
f'(x) = 9x^2-30x+36

2. Вторая производная.
f''(x) = 18x-30
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
18x-30 = 0
Откуда точка перегиба:
x = 5/3

На промежутке: (-∞ ;5/3)
f''(x) < 0
Значит, функция выпукла.

На промежутке (5/3; ∞)
f''(x) 0
Значит, функция вогнута. 

6) \lim_{x \to \infty} 3x^3-15x^2+36x-5 = \infty
\lim_{x \to -\infty} 3x^3-15x^2+36x-5 = -\infty

7(график в приложениях)

Как мог.. Работа объемная, конечно)
Выполнить исследование функции по следующей схеме: 1)найти область определения 2)проверить четность-
4,8(30 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ