М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Djjdcnudghu
Djjdcnudghu
09.09.2021 15:19 •  Алгебра

Один из корней уравнения x^2+bx+32=0 равен 4.найдите коэффициент в и второй корень уравнения

👇
Ответ:
X^2+bx+32=0 при х=4
4^2+4b+32=0
4b=-48
b=-12

x^2-12x+32=0
D=b^2-4ac
D=144-128=16
x1=(12-4)/2=8/2=4
x2=(12+4)/2=16/2=8
ответ:b=-12 x2=8
4,6(15 оценок)
Ответ:
lalalol1
lalalol1
09.09.2021
По теореме Виета:
х1+х2=–b
x1•x2=32

4•x2=32
x2=8

4+8=12
ответ: b=–12; x2=8
4,6(60 оценок)
Открыть все ответы
Ответ:
ppn01012014
ppn01012014
09.09.2021
\frac{x-2}{3-x} \geq 0;
Область допустимых значений (ОДЗ): x≠3 (иначе в знаменателе будет 0).
Находим точки, в которых неравенство обращается в равенство.
\frac{x-2}{3-x} =0 \rightarrow x=2
Рассматриваем поведение в окрестности точки х=2, для чего вычисляем значение функции при х=1.9 и х=2.1, подставляя эти значения в исходное выражение.
y_1=\frac{x-2}{3-x} = \frac{-1.9-2}{3-1.9}= \frac{-3.9}{1.1}; y_10;
Осталось проверить, что происходит со знаком функции после точки х=3, составляющей ОДЗ.
y_3=\frac{x-2}{3-x} = \frac{3.1-2}{3-3.1}= \frac{1.1}{-0.1}; y_3
Анализируя знаки на участках (-∞;2]; [2;3); (3;∞) мы видим, что только знак у2, соответствует знаку исходного неравенства, т.е. ответом будет  [2;3)
4,5(68 оценок)
Ответ:
Vika2002588
Vika2002588
09.09.2021
\frac{x-2}{3-x} \geq 0;
Область допустимых значений (ОДЗ): x≠3 (иначе в знаменателе будет 0).
Находим точки, в которых неравенство обращается в равенство.
\frac{x-2}{3-x} =0 \rightarrow x=2
Рассматриваем поведение в окрестности точки х=2, для чего вычисляем значение функции при х=1.9 и х=2.1, подставляя эти значения в исходное выражение.
y_1=\frac{x-2}{3-x} = \frac{-1.9-2}{3-1.9}= \frac{-3.9}{1.1}; y_10;
Осталось проверить, что происходит со знаком функции после точки х=3, составляющей ОДЗ.
y_3=\frac{x-2}{3-x} = \frac{3.1-2}{3-3.1}= \frac{1.1}{-0.1}; y_3
Анализируя знаки на участках (-∞;2]; [2;3); (3;∞) мы видим, что только знак у2, соответствует знаку исходного неравенства, т.е. ответом будет  [2;3)
4,6(68 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ