М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Demo180
Demo180
15.09.2022 05:25 •  Алгебра

Сложите почленно неравенство -3,7< -2,8 и -1,5< 1,2; умножьте почленно неравенства 6> 9 и 5> 2; пользуясь тем что 1,7< корень3 < 1,8 и 2,6

👇
Ответ:
Niks666
Niks666
15.09.2022
Нужно сделать в неравенствах одинаковые знаки (оба < или оба >),
а затем сложить (вычесть, умножить) отдельно левую и правую части.
(-3,7 < -2,8) + (-1,5 < 1,2) = (-3,7 - 1,5 < -2,8 + 1,2) = (-5,2 < -1,6)
Здесь опечатка, должно быть 9 > 6.
(9 > 6) * (5 > 2) = (9*5 > 6*2) = (45 > 12)
(1,7 < √3 < 1,8) + (2,6 < √7 < 2,7) = (4,3 < √3 + √7 < 4,5)
При вычитании нужно вычитать из большего значения меньшее,
а из меньшее большее.
(1,7 < √3 < 1,8) - (2,6 < √7 < 2,7) = (-1 < √3 - √7 < -0,8)
4,5(62 оценок)
Открыть все ответы
Ответ:
чулпан2008
чулпан2008
15.09.2022
[ ] - это модуль? Обычно так обозначают целую часть числа. Ну ладно.
При x < 1 [x - 1] = 1 - x
x^2 + 3(1 - x) - 7 > 0
x^2 - 3x - + 3 - 7 > 0
x^2 - 3x - 4 > 0
(x - 4)(x + 1) > 0
x = (-oo; -1) U (4; +oo)
Но по условию x < 1, поэтому
x = (-oo; -1)

При x >= 1 [x - 1] = x - 1
x^2 + 3(x - 1) - 7 > 0
x^2 + 3x - 3 - 7 > 0
x^2 + 3x - 10 > 0
(x + 5)(x - 2) > 0
x = (-oo; -5) U (2; +oo)
Но по условию x > 1, поэтому
x = (2; +oo)
ответ: (-oo; -1) U (2; +oo)

Вторая делается точно также
При x < 6 [x - 6] = 6 - x
Подставляем в квадратное неравенство
При x >= 6 [x - 6] = x - 6
Тоже подставляем в квадратное неравенство
4,5(21 оценок)
Ответ:
koshkinaeri
koshkinaeri
15.09.2022
1) y=(1/(x+1)^3)-2
Производная этой функции равна:
y'=- \frac{3}{(x+1)^4}
Так как переменная производной находится в знаменателе, то производная не равна 0 и поэтому функция не имеет ни минимума, ни максимума.
1 f(x) = (- 3 / (x + 1)³) - 2   Область определения функции
Точки, в которых функция точно не определена:x1 = -1.
Функция только убывающая:
-1 > x >-∞ и ∞ > x >-1.
Точки пересечения с осью координат X График функции пересекает ось X при f = , значит надо решить уравнение: 1 -------- - 2 = 0 3 (x + 1) Точки пересечения с осью X:Аналитическое решение 2/3 2 x1 = -1 + ---- 2 Численное решениеx1 = -0.206299474016
Точки пересечения с осью координат YГрафик пересекает ось Y, когда x равняется 0:подставляем x = 0 в 1/((x + 1)^3) - 2.1 -- - 2 3 1 Результат:f(0) = -1Точка:(0, -1)
График функции f = 1/((x + 1)^3) приведен в приложении. 
2Экстремумы функции. Для того, чтобы найти экстремумы,нужно решить уравнениеd --(f(x)) = 0 dx (производная равна нулю),и корни этого уравнения будут экстремумами данной функции:d --(f(x)) = dx -3 ---------------- = 0 3 (x + 1)*(x + 1) Решаем это уравнение. Решения не найдены,значит экстремумов у функции нет
Точки перегибов. Найдем точки перегибов, для этого надо решить уравнение 2 d ---(f(x)) = 0 2 dx (вторая производная равняется нулю),корни полученного уравнения будут точками перегибов для указанного графика функции, 2 d ---(f(x)) = 2 dx 12 -------- = 0 5 (1 + x) Решаем это уравнение. Решения не найдены,значит перегибов у функции нет
Вертикальные асимптоты. Есть:x1 = -1
Горизонтальные асимптоты. Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 1 lim -------- - 2 = -2 x->-oo 3 (x + 1) значит,уравнение горизонтальной асимптоты слева:y = -2 1 lim -------- - 2 = -2 x->oo 3 (x + 1) значит,уравнение горизонтальной асимптоты справа:y = -2
Наклонные асимптоты. Наклонную асимптоту можно найти, подсчитав предел функции 1/((x + 1)^3) - 2, делённой на x при x->+oo и x->-oo 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->-oo x значит,наклонная совпадает с горизонтальной асимптотой справа 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->oo x значит,наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции. Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x).Итак, проверяем: 1 1 -------- - 2 = -2 + -------- 3 3 (x + 1) (1 - x) - Нет 1 1 -------- - 2 = 2 - -------- 3 3 (x + 1) (1 - x) - Нет, значит, функция не является ни чётной, ни нечётной.

Найти промежутки возрастания и убывания, точки экстремума и экстремумы функции: 1) y=(1/(x+1)^3)-2 2
4,7(96 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ