М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dsid2005
dsid2005
23.12.2022 11:16 •  Алгебра

Решить систему уравнений, . х+у=-5; 3х-у=-7

👇
Ответ:
{Х+у=-5
{3х-у=-7

4x=-12

x=-3

-3+y=-5

y=-2

Otvet (x,y)=(-3,-2)
4,4(28 оценок)
Ответ:
Х+у=-5;
3х-у=-7 сложим оба уравнения почленно
4х=-12
х=-3
у=-5-х=-5-(-3)=-5+3=-2
4,7(78 оценок)
Открыть все ответы
Ответ:
karolka10201020
karolka10201020
23.12.2022

a) функция - композиция  дробно-рациональной

t(x)=1/(x-1)  и показательной y=7^(t(x))

t(x)=1/(x-1) - непрерывна при х∈(-∞;1) U(1;+∞)  

y=7^(t(x)) - непрерывна при t∈(-∞;+∞)

Значит и данная функция непрерывна при x∈(-∞;1) U(1;+∞)  

Проверяем непрерывность в точке x=1

Находим предел слева:  lim (x→1-0)7^(1/(x-1))=0

x→1-0 тогда (1/(x-1))→-∞

7^(-∞)→0

Находим предел справа:lim (x→1+0)7^(1/(x-1))=+∞

x→1+0 тогда (1/(x-1))→+∞

7^(+∞)→+∞

x=1- точка разрыва второго рода ( один из односторонних пределов - бесконечный)

б)  y=x²  непрерывна на (-∞;+∞), а потому непрерывна и на [0;1]

y=2x+3 непрерывна на (-∞;+∞), а потому непрерывна и на (1;2]

Значит, надо исследовать непрерывность в точке х=1

Находим предел слева:  lim (x→1-0)x²=(1-0)²=1

Находим предел справа:lim (x→1+0)7=2·1+3=5

Предел слева не равен пределу справа.

Значит предел функции в точке не существует и потому

x=1- точка разрыва первого рода ( пределы конечны, но не равны, есть конечный скачок)

4,7(27 оценок)
Ответ:
teunov
teunov
23.12.2022

a) функция - композиция  дробно-рациональной

t(x)=1/(x-1)  и показательной y=7^(t(x))

t(x)=1/(x-1) - непрерывна при х∈(-∞;1) U(1;+∞)  

y=7^(t(x)) - непрерывна при t∈(-∞;+∞)

Значит и данная функция непрерывна при x∈(-∞;1) U(1;+∞)  

Проверяем непрерывность в точке x=1

Находим предел слева:  lim (x→1-0)7^(1/(x-1))=0

x→1-0 тогда (1/(x-1))→-∞

7^(-∞)→0

Находим предел справа:lim (x→1+0)7^(1/(x-1))=+∞

x→1+0 тогда (1/(x-1))→+∞

7^(+∞)→+∞

x=1- точка разрыва второго рода ( один из односторонних пределов - бесконечный)

б)  y=x²  непрерывна на (-∞;+∞), а потому непрерывна и на [0;1]

y=2x+3 непрерывна на (-∞;+∞), а потому непрерывна и на (1;2]

Значит, надо исследовать непрерывность в точке х=1

Находим предел слева:  lim (x→1-0)x²=(1-0)²=1

Находим предел справа:lim (x→1+0)7=2·1+3=5

Предел слева не равен пределу справа.

Значит предел функции в точке не существует и потому

x=1- точка разрыва первого рода ( пределы конечны, но не равны, есть конечный скачок)

4,6(61 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ