М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pershinspa
pershinspa
14.08.2020 15:59 •  Алгебра

Вящике лежат 4 белые , 5 красных и несколько синих шаров . найдите общее количество шаров в ящике , если вероятность вытащить синий шар равна 0.25

👇
Ответ:
Pro100egor4ik2000
Pro100egor4ik2000
14.08.2020
Теория вероятности: число благоприятных исходов, делённое на число всех исходов.
Пусть х синих шаров-число благоприятных вариантов.
Тогда число всех вариантов 4+5+х=9+х.
Составим уравнение:
0,25= \frac{x}{9+x} 

0,25(9+x)=x
2,25+0,25x=x
-0,75x=-2,25
x=3
Находим общее количество шаров в ящике: 4+5+3=12 шаров.
ответ: 12.
4,5(54 оценок)
Открыть все ответы
Ответ:
MrStepWay
MrStepWay
14.08.2020

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

4,5(17 оценок)
Ответ:
Sabico
Sabico
14.08.2020

ответ: x = 14.

Объяснение: одно дело "выразить икс" и совсем другое - решить уравнение)) можно найти икс, постепенно выполняя обратные действия (не раскрывая скобок):

1) делимое = произведению делителя и частного: 1.2*(12_2/3) = (6/5)*(38/3) = 76/5

2) слагаемое = разности суммы и другого слагаемого: (76/5)-6.2 = (76/5)-(31/5) = 45/5 = 9

3) чтобы найти делитель (это самая внутренняя скобка), нужно делимое разделить на частное:

(3_9/16):9 = (57/16)*(1/9) = (19/16)*(1/3) = 19/48

4) уменьшаемое = разность + вычитаемое: (19/48)+(7/24) = (19+14)/48 = 33/48 = 11/16

5) 2.75:(11/16) = (11/4)*(16/11) = 4

получили: х:(2/7) - 45 = 4

x:(2/7) = 45+4=49

x = 49*(2/7) = 14

и всегда полезно делать проверку:

14:(2/7) = 14*7/2 = 7*7 = 49

49-45 = 4

(2.75)/4 = (11/4)*(1/4) = 11/16

(11/16)-(7/24) = (33-14)/48 = 19/48

(3_9/16):(19/48) = (57/16)*(48/19) = 3*3 = 9

9+6.2 = 15.2

(15.2):(12_2/3) = (76/5)*(3/38) = 6/5 = 12/10 = 1.2

а выразить икс гораздо сложнее...

4,5(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ