Решение: Пусть x - скорость первого автомобиля. Тогда - x-10 - скорость второго автомобиля. Зная, что первый автомобиль на 1 час проехал 300 км быстрей чем второй, составим и решим уравнение: (300/x-10)-(300/x)=1 (300x-300x+3000)/(x^2-10x)=1 3000/(x^2-10x)=1 x^2-10x=3000 x^2-10x-3000=0 D=b^2-4ac D=12100>0-2 корня. x=(-b+√D)/2a x=(10+110)/2 x=120/2 x=60 Второй корень я рассматривать не стану, т.к. он отрицателен, что не подходит по смыслу задачи. Скорость второго автомобиля равна 60 -10=50 км/ч ответ:Скорость первого автомобиля равна 60 км/ч, а скорость второго автомобиля равна 50 км/ч.
Пусть во второй бригаде х рабочих, тогда в первой 2х рабочих. В первой бригаде число рабочих уменьшилось на 5, значит их стало 2х-5. А во второй число рабочих уменьшилось на 2, значит их стало х-2. Так как в первой бригаде рабочих стало на 7 больше, чем во второй, то составим и решим уравнение: 2х-5-(х-2)=7 2х-5-х+2=7 х-3=7 х=7+3 х=10 значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих. ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих