В решении.
Объяснение:
1. Используя обозначения N ; Z ; Q и знаки ∈ ; ∉ , запиши следующее утверждение:
−13 — рациональное число.
ответ : -13∈Q.
(-13 принадлежит множеству рациональных чисел Q).
2. Дан интервал (−8; 8) .
Укажи:
а) числовое множество, содержащееся в этом интервале:
[−6;7]
[8;10]
[−8;6)
б) числовое множество, не содержащееся в этом интервале:
(0;1)
[8;10]
[−6;7]
в) целое число, принадлежащее данному интервалу и отстоящее на одинаковое расстояние от его концов (запиши число): 0. (0 относится к множеству целых чисел Z).
3. Укажи, является ли следующее высказывание истинным:
14/5⋅4/7:2/5∈N.
14/5 * 4/7 : 2/5 = (14 * 4 * 5)/(5 * 7 * 2) = 4
ответ (выбери один вариант ответа и вычисли результат):
высказывание является истинным, так как 14/5⋅4/7:2/5= 4, а 4∈N (число 4 принадлежит множеству натуральных чисел N).
Решаем, как в Судоку.
Посмотрим на клетку, находящуюся в левом верхнем углу, по условию задачи, в этой клетке не 5,4,3, но это не 1 т.к. оно больше какого-то числа. Следовательно там 2. Тогда в клетке, что ниже 1.
Посмотрим на самую нижнюю клетку этого столбца - она может быть или 3 или 5. Посмотрим всю строчку. В строке есть 3, значит в этой клетке 5.
В итоге первый столбец : 2 1 4 3 5, а верхняя строка 2 3 5 1 4.
Теперь заполним 2 столбец.
В нём два знака > и туда подойдут 4 и 5(не 3 т.к. она наверху) Рядом с 4 не может быть 4, поэтому ставим 5, а две клетки ниже 4. Остаётся 2 и 1. Посмотрим на соседний столбец и в итоге получаем : 3 4 5 1 2(4 и 2 не работает)
Заполним предпоследнюю строку(там есть знак). В и клеточке, слева от которой стоит знак будет 5, так как 2 больше только 1, а 1 стоит выше, а 3 и 4 в этом столбике есть. Оставим пока так и перейдем к тем строчкам, которые мы можем теперь заполнить.
Переместимся на нижнюю строку, посмотрим на 4 клетку. В ней может быть либо 4, либо 1. Единица выбывает, т.к. в верхней строчке над этой клеткой тоже 1, значит там 4, а в клетке слева 1. Вернёмся к предпоследней строчке. Т.к. в 4 клетке 4, то в этой строчке там будет 2. Четыре же будет над единицей.
Дальше действуем аналогично и получаем результат на рисунке:
a14=a16-2d
a18=a16+2d ⇔2a16=a14+a18=70 ⇔ a16=35