График линейной функции является прямой линией, с чем и связано ее название. Это касается вещественной функции одной вещественной переменной.
Частный случай ~b=0 линейной функции называется однородными линейными функциями (это в сущности синоним прямой пропорциональности) , в отличие от b \neq 0 — неоднородных линейных функций.
y = kx + b(для функций одной переменной) .
Основное свойство линейных функций: приращение функции пропорционально приращению аргумента. То есть функция является обобщением прямой пропорциональности.
ответ:График линейной функции является прямой линией, с чем и связано ее название. Это касается вещественной функции одной вещественной переменной.
Частный случай ~b=0 линейной функции называется однородными линейными функциями (это в сущности синоним прямой пропорциональности) , в отличие от b \neq 0 — неоднородных линейных функций.
y = kx + b(для функций одной переменной) .
Основное свойство линейных функций: приращение функции пропорционально приращению аргумента. То есть функция является обобщением прямой пропорциональности.
2cosx - cos²x+sin²x - cos²x = 0
sin²x + 2cosx - 2cos²x = 0
1-cos²x + 2cosx - 2cos²x = 0
-3cos²x + 2cosx +1 = 0
cosx = t
-3t²+2t+1 = 0
D = 4 + 4*3 =16 = 4²
x₁ = (-2 - 4)/-6 =1
x₂ = -1/3
cosx = -1/3 --> x₁=arccos(-1/3) +2πn = arccos(1/3) + 2πn; x₂= π-arccos(-1/3) +2πn
cosx = 1 --> X=π/2+πn n∈Z
ответ: π/2+2πn, arccos(1/3) + 2πn, π - arccos(1/3) + 2πn; n∈Z