М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sergey15211
Sergey15211
26.04.2020 20:46 •  Алгебра

Как решить систему уравнений 4x+y=9 3x-5y=17

👇
Ответ:
Nkpr
Nkpr
26.04.2020
4x+y=9
3x-5y=17
Из первого уравнения выражаем у через х:
4x+y=9
у=9-4х
Подставляем вместо у во второе уравнение:
3х-5(9-4х)=17
3х-45+20х=17
3х+20х=45+17
23х=62
х=62/23
Найдем у:
у=9-4х=9-4*62/23=9-248/23=207/23-248/23=-41/23
4,6(11 оценок)
Открыть все ответы
Ответ:
Marieta111
Marieta111
26.04.2020
План действий такой: 1) ищем производную
                                      2) приравниваем её к нулю и решаем получившееся уравнение
                                      3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
                                       4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
 ((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4   и   х = 2
3) Из найденных корней в указанный промежуток попало  х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
    minf(x) = f(-4) = -24
4,8(4 оценок)
Ответ:
Foolrelax
Foolrelax
26.04.2020

1) проверяем условие при наименьшем возможном значении n.

n>5, значит проверяем условие при n=6

2^66^2 \\ 6436

Верно!

2) Сделаем предположение, что для всех n=k, k>5 верно неравенство:

2^kk^2

3) Тогда при n=k+1 должно выполняться неравенство:

2^{k+1}(k+1)^2

Вернемся к неравенству из второго пункта и домножим его на 2:

2^kk^2 \ |*2 \\ 2*2^k2k^2 \\ 2^{k+1}2k^2

Подставим 2k² в 3-й пункт и рассмотрим полученное неравенство:

2k^2(k+1)^2 \\ 2k^2k^2+2k+1 \\ k^2-2k-10 \\ \\ k^2-2k-1=0 \\ D=2^2+4*1=8=(2\sqrt{2})^2 \\ \\ k_{1,2}=\frac{2 \pm2\sqrt{2}}{2}=1 \pm \sqrt{2} \\ \\ +++(1-\sqrt{2})---(1+\sqrt{2})+++_k

по методу интервалов определяем, что неравенство k²-2k-1>0 выполняется при  k>1+√2, тогда при k>5 оно тоже выполняется (так как 5>1+√2)

Тогда обратным ходом получаем 2k²>k²+2k+1 при k>5 или 2k²>(k+1)² при k>5

Если 2^{k+1}2k^2, а 2k^2(k+1)^2 , при k>5

То есть, 2^{k+1}2k^2(k+1)^2 , при k>5, то по закону транзитивности:

2^{k+1}(k+1)^2 , при k>5 - ч.т.д

4,8(57 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ