М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Random00700
Random00700
25.02.2020 05:39 •  Алгебра

1.найдите значение производной функции f(x)=ln(5x+4), в точке x0=2 2. найдите корень уравнения lg(3x+4)=2lg x 3. розвяжите уравнение lg^(2) x-3lg x > -2

👇
Ответ:
vladssos04
vladssos04
25.02.2020
1. f(x)=ln(5x+4), в точке x0=2
f'(x)=1/(5x+4) * (5x+4)'= 1/(5x+4) *5= 5/(5x+4).
f'(2)=5/(5*2+4)=5/14.

2.lg(3x+4)=2lg x
lg(3x+4)=lgx² (двойка идет в степень)
Так как логарифмы с одинаковым оснаванием и они равны, то можно прировнять подлогарифмические выражегия
3х+4=х²
х²-3х-4=0
По ьеореме Виета
х1х2=-4
х1+х2=3
х1=-1 х2=4
ОДЗ х>0 и 3х+4>0, т.е
х>0 и х>-4/3, т.е просто х>0.
Тогда х1 нас не удовлетворяет.
ответ: 4

3. lg^(2) x-3lg x = -2
Вводим замену lgx= t
t²-3t+2=0
По т. Виета
t1•t2=2
t1+r2=3
t1=1
t2=2, возвращаемся к замене
1. lgx=1
(lg это десятичный логарифм, т.е. основание у него 10, еще мы знаем что логарифм у которого основание равно подлогарифмическому выражению равен 1)
lgx=lg10 (мы 1 меняем на lg10)
x=10
2. lgx=2
lgx=2lg10
lgx=lg10²
x=10²
x=100.
ответ: 10; 100.
4,6(71 оценок)
Открыть все ответы
Ответ:
timirkapro
timirkapro
25.02.2020
1) (а-в)²=(в-а)²
Чтобы доказать тождество, нужно с тождественных преобразований:

либо правую часть привести к виду левой части;
либо левую часть привести к виду правой части ;
либо и левую и правую привести к какому другому одинаковому виду

Преобразуем левую часть:
(a - b)² = a² - 2ab + b²
Преобразуем правую часть:
(b-a)²=b² -2ba+a²

Так как аb=ba, то a²-2ab+b²=b²-2ba+a²
Значит
(a-b)²=(b-a)²

2) Выполняем тождественные преобразования левой части и приведем ее к виду правой части
(-a-b)²=(-a)²+2·(-a)·(-b)+(-b)²=a²+2ab+b²=(a+b)²
4,6(2 оценок)
Ответ:
Danfdffefd
Danfdffefd
25.02.2020
Исходное неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ 1 \leq 3-x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1 \leq x-3 \leq 5 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -5 \leq x-3 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1+3 \leq x \leq 5+3 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -2 \leq x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 4 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right

x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;

а) неравенство эквивалентно:

-2 \leq x \leq 2 \ ;

x \in [ -2 ; 2 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

б) неравенство эквивалентно:

-2 \leq x-6 \leq 2 \ ;

6-2 \leq x \leq 2+6 \ ;

x \in [ 4 ; 8 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

в) неравенство эквивалентно:

-1 \leq x \leq 1 \ ;

x \in [ -1 ; 1 ] \ ;

Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

г) неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 1 \leq 6-x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1 \leq x-6 \leq 2 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ -2 \leq x-6 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1+6 \leq x \leq 2+6 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 4 \leq x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 7 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right

x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;

Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;
4,4(14 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ