как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
В решении.
Объяснение:
В отеле Санкт-Петербурга есть 2-х местные и 3-х местные номера, в которые заселили 27 гостей из Москвы таким образом, что гости заняли 10 номеров. Ночь в двухместном номере на одного человека стоит 2000 рублей, ночь в трёхместном номере на одного человека стоит 1500 рублей. Сколько рублей суммарно потратили все гости из Москвы за одну ночь в отеле?
х - количество двухместных номеров.
у - количество трёхместных номеров.
1) По условию задачи система уравнений:
х + у = 10
2х + 3у = 27
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 10 - у
2(10 - у) + 3у = 27
20 - 2у + 3у = 27
у = 7 - количество трёхместных номеров.
х = 10 - у
х = 3 - количество двухместных номеров.
2) Оплата:
3*2 = 6 (чел.) в двухместных номерах * 2000 = 12 000 (руб.);
7*3 = 21 (чел.) в трёхместных номерах * 1500 = 31 500 (руб.);
Суммарно: 12 000 + 31 500 = 43 500 (руб.).
20 - 100%
12 - х%
12*100/20 = 60%
ответ:60% от общего количества.