Сомневаюсь, что в 5-9 классе изучают производную функции |x|, поэтому решим аналитически: Найдём точку смены знака модуля: 2x + 4 = 0, x = -2 Получается, что на отрезке [-3;-2] функция убывает, а на отрезке [-2;3] функция возрастает. Причем возрастает симметрично относительно прямой x = -2, поэтому в точке x = 3 будет наибольшее значение функции. f(3) = 9. Наибольшее значение функции = 9. Так как минимальное значение функции y = |2x+4| - это 0, то отнимая от функции 1, получаем, что минимальное значение = -1.
Произведение 16 можно составить из разных натруральных чисел только двумя
I.
II.
Поскольку это должны быть минимальные числа, то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу, т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы