М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
жансая87
жансая87
03.11.2020 17:19 •  Алгебра

17y-17x+y^2-xy и 21а^2+7a-45a-15 решить

👇
Ответ:
Это не решается,в таких заданиях только упростить можно группировкой
I (17y-y^2)+(-17x-xy)=y(17+y)-x(17+y)=(17+y)(y-x)
II 7a(3a+1)-15(3a+1)=(3a+1)(7a-15) 
4,8(79 оценок)
Открыть все ответы
Ответ:
Carroty13
Carroty13
03.11.2020
V= \frac{1}{3} *S _{osn} *H

Sосн=a²√3/4, а - сторона правильного треугольника

по условию пирамида правильная треугольная, => основание высоты пирамиды - центр описанной около треугольника окружности - точка пересечения высот правильного треугольника, которые точкой пересечения делятся в отношении 2:1 считая от вершины.

прямоугольный треугольник:
гипотенуза с=5 см - длина бокового ребра правильной треугольной пирамиды
катет а=3 см - высота правильной пирамиды
катет b найти,
по теореме Пифагора: 5²=3²+b². b=4 см

b- (1/3) высоты правильного треугольника, которая вычисляется по формуле:
h= \frac{a \sqrt{3} }{2}
4= \frac{a \sqrt{3} }{2}
a=8/√3

S_{osn} = \frac{( \frac{8}{ \sqrt{3} } ) ^{2} * \sqrt{3} }{4} = \frac{16 \sqrt{3} }{3}
V= \frac{1}{3} * \frac{16 \sqrt{3} }{3} *3= \frac{16 \sqrt{3} }{3}
4,4(94 оценок)
Ответ:
KaiBennet
KaiBennet
03.11.2020

8

Объяснение:

Сложим два равенства, получим уравнение:

x^2 + y^2 = 4(x+y)

Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:

(x-2)^2 + (y-2)^2 = 8

Выражаем x через y:

(y-2)^2 = 8 - (x-2)^2 \\y = 2 + \sqrt{8 - (x-2)^2}

(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)

Наша целевая функция, в которой будем находить максимум, имеет вид:

x + 2 + \sqrt{8 - (x-2)^2} = S, где S - сумма решений системы уравнений.

Найдем производную по х, приравняем к нулю эту функцию

Получим

1 - \frac{x-2}{\sqrt{8-(x-2)^2 }} = 0 \\x - 2 = \sqrt{8 - (x-2)^2}\\2(x-2)^2 = 8\\(x-2)^2 = 4\\x_1 = 0;\\x_2 = 4

Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4

Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8

4,6(20 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ