Пусть скорость первого велосипедиста равна х км/ч, а второго - у км/ч. Первый и второй велосипедисты проехали 25 км их расстояние (x+у)*1=(x+y) км
На расстоянии 30 км первый велосипедист проезжает на 1 ч быстрее другого,т.е. время затраченное первым велосипедистом равно 30/х, а вторым - 30/у. На весь путь затратили (30/x - 30/y) ч.
Решим систему уравнений
Домножим левую и правую части уравнения на (25-y)y ≠ 0 , получим
По теореме Виета
не удовлетворяет условию, так как скорость не может быть отрицательной.
км/ч - скорость второго велосипедиста
км/ч - скорость первого велосипедиста.
ответ: скорость первого велосипедиста равна 10 км/ч, а второго - 15 км/ч.
√(x+3)=2+√(7-x);
Возведем обе части в квадрат:
x+3=4+4√(7-x)+7-x;
x+3-4-7+x=4√(7-x);
2x-8=4√(7-x);
x-4=2√(7-x);
Возводим снова обе части в квадрат:
x²-8x+16=4(7-x);
x²-8x+16=28-4x;
x²-8x+4x+16-28=0;
x²-4x-12=0;
D=16+48=64;
x1=(4-8)/2=-2;
x2=(4+8)/2=6.
Проверка:
√(-2+3)≠2+√(7+2);
√1≠2+3;
1≠5.
Значит, х=-2 не является корнем уравнения.
√(6+3)=2+√(7-6);
3=3.
Таким образом, х=6 является корнем уравнения, а значит графики функций пересекаются в точке с абсциссой х=6.
ответ: 6.