a) x/x-2
имеет смысл, когда знаменатель не равен нулю, т.е.
x - 2 ≠ 0
x ≠ 2
б) b+4 / b² +7
имеет смысл, когда знаменатель не равен нулю, т.е. b²+7 ≠ 0 , а это верно при любых b , потому что b² всегда ≥ 0, а 7 > 0. Значит выражение имеет смысл при любых значениях переменной.
в) y² - 1/y + y/y-3
имеет смысл, когда знаменатели не равны нулю, т.е.
y ≠ 0 и y-3 ≠ 0 => y ≠ 3
г) a+10/a(a-1)-1
имеет смысл, когда знаменатель не равен нулю, т.е.
a(a-1)-1 ≠ 0
a² - a - 1 ≠ 0
D = 1 + 4 = 5
a ≠ (1 ± √5)/2
Simplifying
4x3 + -81x = 0
Reorder the terms:
-81x + 4x3 = 0
Solving
-81x + 4x3 = 0
Solving for variable 'x'.
Factor out the Greatest Common Factor (GCF), 'x'.
x(-81 + 4x2) = 0
Factor a difference between two squares.
x((9 + 2x)(-9 + 2x)) = 0
Subproblem 1
Set the factor 'x' equal to zero and attempt to solve:
Simplifying
x = 0
Solving
x = 0
Move all terms containing x to the left, all other terms to the right.
Simplifying
x = 0
Subproblem 2
Set the factor '(9 + 2x)' equal to zero and attempt to solve:
Simplifying
9 + 2x = 0
Solving
9 + 2x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-9' to each side of the equation.
9 + -9 + 2x = 0 + -9
Combine like terms: 9 + -9 = 0
0 + 2x = 0 + -9
2x = 0 + -9
Combine like terms: 0 + -9 = -9
2x = -9
Divide each side by '2'.
x = -4.5
Simplifying
x = -4.5
Subproblem 3
Set the factor '(-9 + 2x)' equal to zero and attempt to solve:
Simplifying
-9 + 2x = 0
Solving
-9 + 2x = 0
Move all terms containing x to the left, all other terms to the right.
Add '9' to each side of the equation.
-9 + 9 + 2x = 0 + 9
Combine like terms: -9 + 9 = 0
0 + 2x = 0 + 9
2x = 0 + 9
Combine like terms: 0 + 9 = 9
2x = 9
Divide each side by '2'.
x = 4.5
Simplifying
x = 4.5
Solution
x = {0, -4.5, 4.5}
2. Избавляясь от логарифма, получается: x²-5x+6>0, ⇒ x∈(-∞;2)∩(3;+∞)