Пусть:
Vo - собственная скорость катеров,
V1 - скорость катера плывущего по течению реки, тогда V1=Vo+Vр
V2 - скорость катера плывущего против течения реки, тогда V2=Vo-Vр
До места встречи за 3часа катера проплыли: 1катер - Хкм, 2 ктер - (73,2-Х)км, т.е.
х = 3*V1
73,2 - Х = 3*V2, решаем систему
73,2 - 3*V1 = 3*V2, 73,2 = 3* (Vo+Vр + Vo-Vр) = 6*Vo, Vo = 13,3 км/час
а) V1 = 73,2 : 4,8 = 61/4 км/час, Vp = V1 - Vo = 61/4 - 133/10 = 11/5 = 2,2 км/час
t = 73,2 / V2 = 73,2 /(133/10 - 11/5) = 732/111 часа.
б) To = 73,2/13,3 = 6 часов
Складываем оба уравнения, получим:
x² - 2 * x * y + y² = 1.
Разложим по формуле квадрата разности, получим:
(x - y)² = 1,
x - y = 1,
x - y = -1.
Вычитаем из первого системного уравнения второе, получим:
x² - y² = 3.
Разложим как разность квадратов, получим:
(x - y) * (x + y) = 3.
Следовательно, получим две системы уравнений:
1. (x - y) * (x + y) = 3 и x - y = 1,
x + y = 3 и x - y = 1.
Складываем почленно:
2 * x = 4, откуда х = 2,
y = x - 1 = 2 - 1 = 1.
2. (x - y) * (x + y) = 3 и x - y = -1,
x + y = -3 и x - y = -1,
2 * x = -4,
x = -2,
y = x + 1 = -2 + 1 = -1.
ответ: (2; 1) и (-2; -1).