Предприниматель взял в банке кредит в размере 300,000 р под некоторый процент годовых . через 2 года он вернул в банк 432,000 р кокова процентная ставка кредита в этом банке
ответ: 300000-100% 432000-х т.е неизвестно, значит: 432000×100÷300000=144% а потом 144÷2 потаму что он вернул деньги через 2 года, значит: 144÷2=72℅. Процентная ставка этого банка 72%
Пусть расстояние между А и В (s) км, скорость1 первого (х) км/час --ее нужно найти, скорость2 (2х/3) км/час --она в 3/2 раза меньше скорости1, скорость3 ((2х/3)-6) км/час --она на 6 км/час меньше скорости2 время в пути первого: (s/х) час время в пути второго: (s/(2х/3))=(3s)/(2x) час время в пути третьего: (s)/((2х/3)-6)=(3s)/(2x-18) час 10 минут = (1/6) часа 15 минут = (1/4) часа получим систему уравнений: 3s/(2х) = (s/х) + (1/6) второй приехал позже --> время больше 3s/(2х-18) = 3s/(2х) + (1/4) третий приехал позже второго
3s/(2х) = (6s+х)/(6x) 3s/(2х-18) = (6s+х)/(4x)
9sх = x(6s+х) 6sх = (x-9)(6s+х)
3sx = x² 54s+9x = x²
9x = (3x-54)s ---> s = 3x/(x-18) x² = 3x * 3x/(x-18) x-18 = 9 x = 27 (км/час) скорость первого велосипедиста s = 3*27/9 = 9 (км)
ПРОВЕРКА: скорость второго велосипедиста: 27:1.5 = 27*2/3 = 18 км/час его (второго) время в пути: 9:18 = 1/2 часа = 30 минут скорость третьего велосипедиста: 18-6 = 12 км/час его (третьего) время в пути: 9:12 = 3/4 часа = 45 минут время первого велосипедиста в пути: 9:27 = 1/3 часа = 20 минут второй приехал на 30-20=10 минут позже первого))) второй приехал на 30-45=-15 минут раньше третьего)))
Что бы решить данную систему графически: 1) Мы должны начертить на графике 2 функции по отдельности 2) Найти точки/точку пересечения графиков этих функций и определить координату данной\ых точки\точек. Это координата\координаты и будет решением данной системы.
А теперь давайте решим данную систему графически:
Начертим график функции (во вложении, график параболы)
Теперь начертим график функции ( во вложении, график прямой)
Объединяем 2 графика: (график во вложении)
И видим что 2 графика пересекаются в следующих координатах: (0,0) (2,8) Эти координаты и есть решения данной системы.