Пусть расстояние от в до с равно х км, тогда расстояние от а до в равно х-29 км, все растояние пройденное туристом равно х+х-29=2х-29 км. время, затраченное на путь ав равно (х-29): 3 час, на путь вс равно х: 4, все затраченное время равно \frac{x-29}{3}+\frac{x}{4}=\frac{4(x-29)+3x}{12}=\frac{4x-116+3x}{12}=\frac{7x-116}{12} час. по условию составляем уравнение: (2x-29): \frac{7x-116}{12}=\frac{35}{9}; \\ 12(2x-29)=\frac{35(7x-116)}{9}; \\ 9*12(2x-29)=35(7x-116); \\ 108(2x-29)=245x-4060; \\ 216x-3132=245x-4060; \\ 216x-245x=3132-4060; \\ -29x=-928; \\ 29x=928; \\ x=928: 29; \\ x=32 значит расстояние от в до с равно 32 км, расстояние ав равно 32-29=3 км от а до в турист шел 3: 3=1 час, от в до с 32: 4=8 ч
Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48