3. У трикутнику АВС сторону АВ точками M і N поділили на три рівні частини. Знайти вектор CM , якщо CA a і CB b . Відповідь: CM 2a b . 3 4. Чотирикутник ABCD – паралелограм, О – точка перетину його діагоналей, М – довільна точка, відмінна від О. Виразити вектор a MA MB MC MD через вектор MO . Відповідь: a 4MO . 5. У рівнобічній трапеції ABCD відомо: нижня основа AB a , бічна сторона AD b і кут між ними A . Розкласти за векторами a і b вектори BC , 3 CD , AC і BD , що утворюють решту сторін і діагоналі трапеції. Відповідь: BC b a b ; CD b a a ; AC a b a b ; aaa BD b a . 6. У трикутнику АВС проведено медіани AD, BE і CF. Довести, що AD BE CF 0 . 7. Дано ромб ABCD. Чи будуть рівними вектори: 1) AD і DC ; 2) AD і BC ; 3) AB і CD ? Відповідь: 1) ні; 2) так; 3) ні.
1) Оценки Поли: x - количество "5", y - количество "4", z - количество "3", с - количество "2". x+y+z+c = 20 (5х + 4у + 3z + 2c) - общее количество у Поли
2) Оценки Тани: x - количество "4", y - количество "3", z - количество "2", с - количество "5". x+y+z+c=20 (4х + 3у + 2z + 5c) - общее количество у Тани
3) По условию средний в четверти у девочек одинаковый и количество отметок одинаковое, равное 20. Это означает, что и общее количество девочек одинаковое. Получаем систему 2-х уравнений: