М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kozubyaka
kozubyaka
11.03.2023 11:29 •  Алгебра

Найдите сумму первых девяти членов арифметической прогрессии, если a1=0,8, d=2.

👇
Ответ:
artemmaslov25Artem
artemmaslov25Artem
11.03.2023
S9 = (2a1 + 8d)/2*9 = 4,5(2*0,8 + 8*2) = 4,5*17,6 = 79,2
4,8(87 оценок)
Открыть все ответы
Ответ:
srs777s
srs777s
11.03.2023
1) 3x² + 9 - 12x + x² = 0
4x² - 12x + 9 = 0
D = b² - 4ac = 144 - 16×9 = 0
x = -b/2a
x = 12/8
x = 1,5

2) 5x² + 1 - 6x + 4x² = 0
9x² - 6x + 1 = 0
D = b² - 4ac = 36 - 36×1 = 0
x = -b/2a
x = 6/18
x = 1/3

3) x² + 2x - 3 = 0
D = b² -4ac = 4 - 4×(-3) = 26 = 4²
x1 = ( - 2 + 4) / 2 = 1
x2 = ( - 2 - 4) / 2 = - 3

4) x² + 3x -4 = 0
D = b²- 4ac = 9 - 4×(-4) = 25 = 5²
x1 = ( - 3 + 5) / 2 = 1
x2 = ( - 3 - 5) / 2 = - 4

5) x² - 5x + 4 = 0
D = b² - 4ac = 25 - 4×4 = 9 = 3²
x1 =( 5 + 3) / 2 = 4
x2 = ( 5 - 3) / 2 = 1

6) x² - 4x + 3 = 0
D = b - 4ac = 16 - 4×3 = 4 = 2²
x1 = ( 4 + 2) / 2 = 3
x2 = ( 4 - 2) / 2 = 1

7) 2x² + x - 3x - 4 = 0
2x² - 2x - 4 = 0
x² - x - 2 = 0
D = b² - 4ac = 1 - 4×(-2) = 9 = 3²
x1 = ( 1 + 3) / 2 = 2
x2 = ( 1 - 3) / 2 = - 1

8) 2x² - 3x - 4x + 3 = 0
2x² - 7x + 3 = 0
D = b²- 4ac = 49 - 8×3 = 25 = 5²
x1 = ( 7 + 5) / 4 = 3
x2 = ( 7 - 5)/ 4 = 0,5
4,4(81 оценок)
Ответ:
Luna669
Luna669
11.03.2023

Чтобы выполнить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, надо найти сумму или разность числителей, а знаменатель оставить без изменений.

Пример 1. Выполните сложение алгебраических дробей:

а)   a + 3  +  a - 3         б)   2b - 1  +  b + 4

b b 2 2

Решение: складываем числители дробей и выполняем приведение подобных членов (если они есть):

а)   a + 3  +  a - 3  =  (a + 3) + (a - 3)  =  a + 3 + a - 3  =  2a

b b b b b

б)   2b - 1  +  b + 4  =  (2b - 1) + (b + 4)  =  2b - 1 + b + 4  =  3b + 3

2 2 2 2 2

Пример 2. Выполните вычитание алгебраических дробей:

а)   x + 5  -  5x         б)   a + b  -  a + 4

3 3 a - 5 a - 5

Решение: вычитаем из числителя первой дроби числитель второй дроби и выполняем приведение подобных членов (если они есть):

а)   x + 5  -  5x  =  x + 5 - 5x  =  5 - 4x

3 3 3 3

б)   a + b  -  a + 4  =  (a + b) - (a + 4)  =  a + b - a - 4  =  b - 4

a - 5 a - 5 a - 5 a - 5 a - 5

Сложение и вычитание алгебраических дробей с одинаковыми знаменателями в виде общих формул:

a  +  b   =   a + b      и      a  -  b   =   a - b           (c≠0)

c c c c c c

Если дроби имеют знаменатели, состоящие из противоположных выражений, то есть выражений, отличающихся только знаком, надо тождественно преобразовать одну из дробей, чтобы привести их к общему знаменателю. Преобразование выполняется в соответствии с правилами знаков:

a  =  -a

b -b

Данное преобразование можно рассматривать как умножение числителя и знаменателя дроби на -1. Следовательно, если числитель и знаменатель алгебраической дроби заменить на противоположные выражения, то получится дробь, равная данной. Полученную дробь можно переписать, поставив один из минусов перед дробью:

a  =  -a  = - a  = - -a

b -b -b b

Также, любую отрицательную дробь можно сделать положительной, перенеся минус, стоящий перед дробью, в числитель или знаменатель:

- a  =  -a  =  a

b b -b

Пример 1. Найдите сумму дробей:

5a  +  3a

b - c c - b

Решение: чтобы выполнить сложение, поменяем знаки перед второй дробью и в её знаменателе на противоположные:

5a  +  3a  =  5a  -  3a  =  5a  -  3a  =  2a

b - c c - b b - c -(c - b) b - c b - c b - c

Пример 2. Найдите разность дробей:

n + 5  -  2n

n2 - m m - n2

Решение: чтобы выполнить вычитание, перенесём знак минус, стоящий перед второй дробью, в её знаменатель:

n + 5  -  2n  =  n + 5  +  2n  =  n + 5  +  2n  =  3n + 5

n2 - m m - n2 n2 - m -(m - n2) n2 - m n2 - m n2 - m

Сложение и вычитание с разными знаменателями

Чтобы найти сумму или разность алгебраических дробей с разными знаменателями, надо:

найти общий знаменатель,

привести алгебраические дроби к общему знаменателю,

выполнить сложение или вычитание,

сократить полученную дробь, если это возможно.

Пример 1. Выполните сложение дробей:

2a  +  b

a + b a - b

Решение: находим общий знаменатель. Он будет равен произведению знаменателей данных дробей:

(a + b)(a - b)

Как находить общий знаменатель, Вы можете узнать на странице Приведение алгебраических дробей к общему знаменателю. Далее умножаем числитель каждой дроби на дополнительный множитель:

2a(a - b) = 2a2 - 2ab

b(a + b) = ab + b2

Общий знаменатель можно свернуть в разность квадратов. В итоге у нас получится:

2a  +  b  =  2a2 - 2ab  +  ab + b2  =  

a + b a - b a2 - b2 a2 - b2

=  2a2 - 2ab + ab + b2  =  2a2 - ab + b2

a2 - b2 a2 - b2

Пример 2. Выполните вычитание дробей:

b  -  2

a2 - ab a - b

Решение: разложим знаменатель первой дроби на множители:

a2 - ab = a(a - b)

Так как данное выражение делится на знаменатель второй дроби, то возьмём его в качестве общего знаменателя. Значит, теперь нам надо умножить числитель второй дроби на дополнительный множитель a:

2 · a = 2a

Получаем:

b  -  2  =  b  -  2a  =  b - 2a

a2 - ab a - b a(a - b) a(a - b) a(a - b)

Пример 3. Выполните сложение:

x +  x2

1 - x

Решение: запишем первое слагаемое в виде дроби и приведём её к знаменателю 1 - x:

x +  x2  =  x  +  x2  =  x(1 - x)  +  x2  =  x - x2  +  x2

1 - x 1 1 - x 1 - x 1 - x 1 - x 1 - x

Теперь можно выполнить сложение дробей с одинаковыми знаменателями:

x - x2  +  x2  =  x - x2 + x2  =  x

1 - x 1 - x 1 - x 1 - x

Точно также можно выполнять сложение и вычитание алгебраических дробей с любыми многочленами.

Объяснение:

4,7(70 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ