Пусть пропущенное число равно х.
1. Найдем среднее арифметическое:
(х+3+4+4+7+15+15+16+24)/9=(x+88)/9
2. Упорядочим имеющиеся числа по возрастанию: 3, 4, 4, 7, 15, 15, 16, 24. Между числами этого упорядоченного ряда где-то нужно вставить число х, тогда по определению, медианой ряда будет число, расположенное ровно посередине, т.е. 5-ое по счету число.
Если х<7, то 5-ым числом, т.е. медианой, будет 7, откуда (x+88)/9=7, х=7*9-88=-25<7, т.е. -25 удовлетворяет условию.
Если 7≤х≤15, то медианой будет само х, но тогда (x+88)/9=х, откуда х=11, тоже подходит.
Если х>15, то медиана ряда равна 15, т.е. (x+88)/9=15, откуда х=9*15-88=47.
ответ: подходят три числа: -25; 11; 47.
а) На первое место можно использовать любую цифру из 5, на второе место - оставшиеся из 4 цифр, на третье место - оставшиеся 3 цифры, а на четвертое место - 2 цифры. По правилу произведения, четырехзначных чисел 5*4*3*2=120 можно составить
ответ: 120 чисел.
б) Так как на первое место 0 нельзя использовать, то берем любую цифру из 4, на второе место выбираем 4 цифры (0 используется), на третье место - оставшиеся 3 цифры, на третье место - 2 цифры. По правилу произведения, всего четырехзначных чисел 4*4*3*2=96
ответ: 96
a-d=2;
2a=18,
a-d=2;
a=9,
d=7;
ответ:(9;7)
a=9