В левой части корень четной степени ,следовательно подкоренное выражение должно быть неотрицательным. получаем неравенство: 7x-31>=0, 7x>=31. x>=31/7. 7x-31=25, 7x=25+31, 7x=56, x=56/7=8. ответ: x=8.
Для начала надо найти любые целые x и y, удовлетворяющие условию. Например x0=13 и y0=65, то есть 19*13+14*65=1157. Теперь можно записать формулы для x и y через целое число k: x=x0+14k и y=y0-19k Вместо x0 и y0 подставляем найденные числа: x=13+14k и y=65-19k Теперь можно найти все решения в натуральных x и y. Т.к. y - натуральное число, то 65-19k>0, то есть k<65/19≈3.4 x - натуральное число, то есть 13+14k>0, то есть k>-13/14≈-0.9 Теперь мы знаем, что k может равняться только {0,1,2,3} Подставляем вместо k полученные числа в формулы x и y: 1) x=13+14*0=13 и y=65-19*0=65 2) x=13+14*1=27 и y=65-19*1=46 3) x=13+14*2=41 и y=65-19*2=27 4) x=13+14*3=55 и y=65-19*3=8