Пусть x - сумма всех учеников в первой группе до перехода, а y - количество учеников в этой группе. Тогда:
x/y = 22
Пусть k - сумма всех учеников во второй группе до перехода, а l - количество учеников в этой группе. Тогда:
k/l = 45
Известно, что при переходе ученика из второй группы в первую, средний у обоих групп повысился на 1, то есть:
(x+n)/(y+1)=23
(k-n)/(l-1)=46
Где n - количество ученика, который перешёл из второй группы в первую. Выразим n в обеих формулах:
n = 23(y+1)-x
n = -46(l-1)+k
Приравняем правые части этих уравнений:
23(y+1)-x = -46(l-1)+k
23y+23-x = k-46l+46
x и k мы можем выразить из двух первых формул, то есть:
x = 22y
k = 45l
Подставим правые части данных уравнений в уравнение выше:
23y+23-x = k-46l+46
23y+23-22y = 45l-46l+46
y+23 = 46-l
y+l = 46-23
y+l = 23
Поскольку y - количество учеников в первой группе, а l - количество учеников во второй группе, то y + l = 23 ученика в обеих группах.
23 ученика в обеих группах
Объяснение:
=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Приведём к общему знаменателю
(12*(х-6)-12*(х+1)-7*(х-6)*(х+1)=0
-7*x^2+35*x-42=0 (/-7)
x^2-5*x+6=0
x1,2=(5±√(25-24))/2=(5±1)/2
x1=2
х2=3