Инейная функция задается формулой: у = kx + b. а) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ пересекаются, если коэффициенты при переменной х различны, т.е k₁ ≠ k₂, поэтому графики функций у = 5х + 3 и у = -4х - 7 пересекаются, т.к. 5 ≠ -7. б) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ параллельны, если коэффициенты при переменной х совпадают, т.е. k₁ = k₂, а b₁ ≠ b₂, поэтому графики функций у = 5х + 3 и у = 5х - 7 параллельны, т.к. 5 =5, а 3 ≠ -7. в) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ совпадают, если коэффициенты при переменной х совпадают или пропорциональны, т.е. k₁ = k₂, а также b₁ = b₂, поэтому графики функций у = 5х + 3 и у = 10х + 6 совпадают, т.к. 10 : 5 = 6 : 3 = 2. Чтобы убедится в этом достаточно построить графики указанных функций.
1) R=(5 корень из 3 * корень из 3) и все разделить на 3 =15/3=5 см S=пи * r в квадрате=25 см в квадрате. Длина окружности равна 2 пи*r=10пи см. 2) Длина круга l=2*пи*r, а его градусная мера 360, т.к. тут гралусная мера 120, то длина дуги I=(120/360)*пи *r=3,14*4/3=4,19(см) По такому же принципу, равна (120/360) площади окружности S=1/3*пи*r в квадрате=1/3*3,14*4в квадрате=16,75(см в квадрате) 3) 1) сторона треугольника =6 корней из 3/3=2 корня из 3 2) R=(2* корень из 3)/ корень из 3=2 3) 4/корень из 3-сторона шестиугольника 4) Периметр шестиугольника=24 корень из 3/3=8 корень из 3