ответ:x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}
Объяснение:
Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.
Вот так будет выглядеть Ваше условие на математическом языке:
\[cos x = \frac{1}{2}\]
Да, я понимаю, что это Вам особо не так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом:
\[cos x = a\]
\[x = \pm arccos \mathbf{a} + 2\pi n, n \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[cos x = \frac{1}{2}\\]
\[x = \pm arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}\]
Значение arccos \frac{1}{2} мы найдём при таблицы. И исходя из этого получаем, что arccos \frac{1}{2} = \frac{\pi}{3}
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[cos x = \frac{1}{2}\]
\[x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}\]
А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое:
\[x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}\]
ответ: x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}
40 - первое число.
24 - второе число.
Объяснение:
Різниця двох чисел дорівнює 16, а 20% зменшуваного на 2 більше, ніж 25% від'ємника. Знайдіть ці числа.
Составляем систему уравнений согласно условия задания:
х - первое число.
у - второе число.
х-у=16
0,2х-0,25у=2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=16+у
0,2(16+у)-0,25у=2
3,2+0,2у-0,25у=2
-0,05у=2-3,2
-0,05у= -1,2
у= -1,2/-0,05
у=24 - второе число.
Теперь вычислить х:
х=16+у
х=16+24
х=40 - первое число.
Проверка:
40-24=16
0,2*40-0,25*24=8-6=2, верно.
Решением данной системы является