При каких значениях параметра a: Имеет два корня ax²-(1-a)x-3=0
Решение: Квадратное уравнение ax²+bx+c=0 имеет два корня x1 и x2 если а≠0 и его дискриминант D = b²-4ac больше нуля или D>0
Найдем дискриминант
D =(1-a)² -4*a*(-3) =1-2a+a² +12a =a²+10a+1
Решим неравенство D > 0 a² + 10a + 1 >0 Разложим левую часть неравенства на множители решив квадратное уравнение a² + 10a + 1 = 0 D =10² - 4 =100-4 =96
Поэтому можно записать a² + 10a + 1 =(a+5+2√6)(a+5-2√6) Перепишем наше неравенство и решим методом интервалов (a+5+2√6)(a+5-2√6) >0
На числовой прямой отобразим нули квадратного уравнения и определим по методу подстановки (например при а=0 a² + 10a + 1=1>0) знаки левой части неравенства
+ 0 - 0 + -------------!---------------!----------- -5-2√6 -5+2√6 Поэтому неравенство a² + 10a + 1>0 при a∈(-∞;-5-2√6)U(-5+2√6;+∞)
Следовательно исходное квадратное уравнение ax²-(1-a)x-3=0 имеет два корня если a∈(-∞;-5-2√6)U(-5+2√6;0)U(0;+∞)
Решение Половина пути для второго автомобиля 0,5. Пусть х км/ч – скорость первого автомобилиста, тогда (х + 54) км/ч - скорость второго автомобилиста Время второго автомобиля, за которое он весь путь 0,5 / 36 + 0,5/(x + 54) Время первого автомобиля равно времени второго автомобиля. 1/x = 0,5 / 36 + 0,5/(x + 54) 1/x - 0,5 / 36 - 0,5/(x + 54) = 0 36(x + 54) – 0,5x(x + 54) – 0,5*36x = 0 36x + 1944 – 0,5x² - 27x – 18x = 0 – 0,5x² - 9x + 1944 = 0 I : (-0.5) x² + 18x – 3888 = 0 D = 324 + 4*1*3888 = 15876 = 1262 X₁ = (- 18 – 126)/2 = - 72 не удовлетворяет условию задачи X₂ = (- 18 + 126)/2 = 54 54 км/ч - скорость первого автомобилиста ответ: 54 км/ч
ax²-(1-a)x-3=0
Решение:
Квадратное уравнение ax²+bx+c=0 имеет два корня x1 и x2 если а≠0 и его дискриминант D = b²-4ac больше нуля или D>0
Найдем дискриминант
D =(1-a)² -4*a*(-3) =1-2a+a² +12a =a²+10a+1
Решим неравенство
D > 0
a² + 10a + 1 >0
Разложим левую часть неравенства на множители решив квадратное уравнение
a² + 10a + 1 = 0
D =10² - 4 =100-4 =96
Поэтому можно записать
a² + 10a + 1 =(a+5+2√6)(a+5-2√6)
Перепишем наше неравенство и решим методом интервалов
(a+5+2√6)(a+5-2√6) >0
На числовой прямой отобразим нули квадратного уравнения и определим по методу подстановки (например при а=0 a² + 10a + 1=1>0)
знаки левой части неравенства
+ 0 - 0 +
-------------!---------------!-----------
-5-2√6 -5+2√6
Поэтому неравенство a² + 10a + 1>0 при a∈(-∞;-5-2√6)U(-5+2√6;+∞)
Следовательно исходное квадратное уравнение ax²-(1-a)x-3=0 имеет два корня если a∈(-∞;-5-2√6)U(-5+2√6;0)U(0;+∞)
ответ:a∈(-∞;-5-2√6)U(-5+2√6;0)U(0;+∞)